cavargas10 commited on
Commit
320f0df
·
verified ·
1 Parent(s): 8ddc992

Upload 9 files

Browse files
trellis/pipelines/__init__.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from . import samplers
2
+ from .trellis_image_to_3d import TrellisImageTo3DPipeline
3
+ from .trellis_text_to_3d import TrellisTextTo3DPipeline
4
+
5
+
6
+ def from_pretrained(path: str):
7
+ """
8
+ Load a pipeline from a model folder or a Hugging Face model hub.
9
+
10
+ Args:
11
+ path: The path to the model. Can be either local path or a Hugging Face model name.
12
+ """
13
+ import os
14
+ import json
15
+ is_local = os.path.exists(f"{path}/pipeline.json")
16
+
17
+ if is_local:
18
+ config_file = f"{path}/pipeline.json"
19
+ else:
20
+ from huggingface_hub import hf_hub_download
21
+ config_file = hf_hub_download(path, "pipeline.json")
22
+
23
+ with open(config_file, 'r') as f:
24
+ config = json.load(f)
25
+ return globals()[config['name']].from_pretrained(path)
trellis/pipelines/base.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ import torch
3
+ import torch.nn as nn
4
+ from .. import models
5
+
6
+
7
+ class Pipeline:
8
+ """
9
+ A base class for pipelines.
10
+ """
11
+ def __init__(
12
+ self,
13
+ models: dict[str, nn.Module] = None,
14
+ ):
15
+ if models is None:
16
+ return
17
+ self.models = models
18
+ for model in self.models.values():
19
+ model.eval()
20
+
21
+ @staticmethod
22
+ def from_pretrained(path: str) -> "Pipeline":
23
+ """
24
+ Load a pretrained model.
25
+ """
26
+ import os
27
+ import json
28
+ is_local = os.path.exists(f"{path}/pipeline.json")
29
+
30
+ if is_local:
31
+ config_file = f"{path}/pipeline.json"
32
+ else:
33
+ from huggingface_hub import hf_hub_download
34
+ config_file = hf_hub_download(path, "pipeline.json")
35
+
36
+ with open(config_file, 'r') as f:
37
+ args = json.load(f)['args']
38
+
39
+ _models = {}
40
+ for k, v in args['models'].items():
41
+ try:
42
+ _models[k] = models.from_pretrained(f"{path}/{v}")
43
+ except:
44
+ _models[k] = models.from_pretrained(v)
45
+
46
+ new_pipeline = Pipeline(_models)
47
+ new_pipeline._pretrained_args = args
48
+ return new_pipeline
49
+
50
+ @property
51
+ def device(self) -> torch.device:
52
+ for model in self.models.values():
53
+ if hasattr(model, 'device'):
54
+ return model.device
55
+ for model in self.models.values():
56
+ if hasattr(model, 'parameters'):
57
+ return next(model.parameters()).device
58
+ raise RuntimeError("No device found.")
59
+
60
+ def to(self, device: torch.device) -> None:
61
+ for model in self.models.values():
62
+ model.to(device)
63
+
64
+ def cuda(self) -> None:
65
+ self.to(torch.device("cuda"))
66
+
67
+ def cpu(self) -> None:
68
+ self.to(torch.device("cpu"))
trellis/pipelines/samplers/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .base import Sampler
2
+ from .flow_euler import FlowEulerSampler, FlowEulerCfgSampler, FlowEulerGuidanceIntervalSampler
trellis/pipelines/samplers/base.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ from abc import ABC, abstractmethod
3
+
4
+
5
+ class Sampler(ABC):
6
+ """
7
+ A base class for samplers.
8
+ """
9
+
10
+ @abstractmethod
11
+ def sample(
12
+ self,
13
+ model,
14
+ **kwargs
15
+ ):
16
+ """
17
+ Sample from a model.
18
+ """
19
+ pass
20
+
trellis/pipelines/samplers/classifier_free_guidance_mixin.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+
3
+
4
+ class ClassifierFreeGuidanceSamplerMixin:
5
+ """
6
+ A mixin class for samplers that apply classifier-free guidance.
7
+ """
8
+
9
+ def _inference_model(self, model, x_t, t, cond, neg_cond, cfg_strength, **kwargs):
10
+ pred = super()._inference_model(model, x_t, t, cond, **kwargs)
11
+ neg_pred = super()._inference_model(model, x_t, t, neg_cond, **kwargs)
12
+ return (1 + cfg_strength) * pred - cfg_strength * neg_pred
trellis/pipelines/samplers/flow_euler.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ import torch
3
+ import numpy as np
4
+ from tqdm import tqdm
5
+ from easydict import EasyDict as edict
6
+ from .base import Sampler
7
+ from .classifier_free_guidance_mixin import ClassifierFreeGuidanceSamplerMixin
8
+ from .guidance_interval_mixin import GuidanceIntervalSamplerMixin
9
+
10
+
11
+ class FlowEulerSampler(Sampler):
12
+ """
13
+ Generate samples from a flow-matching model using Euler sampling.
14
+
15
+ Args:
16
+ sigma_min: The minimum scale of noise in flow.
17
+ """
18
+ def __init__(
19
+ self,
20
+ sigma_min: float,
21
+ ):
22
+ self.sigma_min = sigma_min
23
+
24
+ def _eps_to_xstart(self, x_t, t, eps):
25
+ assert x_t.shape == eps.shape
26
+ return (x_t - (self.sigma_min + (1 - self.sigma_min) * t) * eps) / (1 - t)
27
+
28
+ def _xstart_to_eps(self, x_t, t, x_0):
29
+ assert x_t.shape == x_0.shape
30
+ return (x_t - (1 - t) * x_0) / (self.sigma_min + (1 - self.sigma_min) * t)
31
+
32
+ def _v_to_xstart_eps(self, x_t, t, v):
33
+ assert x_t.shape == v.shape
34
+ eps = (1 - t) * v + x_t
35
+ x_0 = (1 - self.sigma_min) * x_t - (self.sigma_min + (1 - self.sigma_min) * t) * v
36
+ return x_0, eps
37
+
38
+ def _inference_model(self, model, x_t, t, cond=None, **kwargs):
39
+ t = torch.tensor([1000 * t] * x_t.shape[0], device=x_t.device, dtype=torch.float32)
40
+ if cond is not None and cond.shape[0] == 1 and x_t.shape[0] > 1:
41
+ cond = cond.repeat(x_t.shape[0], *([1] * (len(cond.shape) - 1)))
42
+ return model(x_t, t, cond, **kwargs)
43
+
44
+ def _get_model_prediction(self, model, x_t, t, cond=None, **kwargs):
45
+ pred_v = self._inference_model(model, x_t, t, cond, **kwargs)
46
+ pred_x_0, pred_eps = self._v_to_xstart_eps(x_t=x_t, t=t, v=pred_v)
47
+ return pred_x_0, pred_eps, pred_v
48
+
49
+ @torch.no_grad()
50
+ def sample_once(
51
+ self,
52
+ model,
53
+ x_t,
54
+ t: float,
55
+ t_prev: float,
56
+ cond: Optional[Any] = None,
57
+ **kwargs
58
+ ):
59
+ """
60
+ Sample x_{t-1} from the model using Euler method.
61
+
62
+ Args:
63
+ model: The model to sample from.
64
+ x_t: The [N x C x ...] tensor of noisy inputs at time t.
65
+ t: The current timestep.
66
+ t_prev: The previous timestep.
67
+ cond: conditional information.
68
+ **kwargs: Additional arguments for model inference.
69
+
70
+ Returns:
71
+ a dict containing the following
72
+ - 'pred_x_prev': x_{t-1}.
73
+ - 'pred_x_0': a prediction of x_0.
74
+ """
75
+ pred_x_0, pred_eps, pred_v = self._get_model_prediction(model, x_t, t, cond, **kwargs)
76
+ pred_x_prev = x_t - (t - t_prev) * pred_v
77
+ return edict({"pred_x_prev": pred_x_prev, "pred_x_0": pred_x_0})
78
+
79
+ @torch.no_grad()
80
+ def sample(
81
+ self,
82
+ model,
83
+ noise,
84
+ cond: Optional[Any] = None,
85
+ steps: int = 50,
86
+ rescale_t: float = 1.0,
87
+ verbose: bool = True,
88
+ **kwargs
89
+ ):
90
+ """
91
+ Generate samples from the model using Euler method.
92
+
93
+ Args:
94
+ model: The model to sample from.
95
+ noise: The initial noise tensor.
96
+ cond: conditional information.
97
+ steps: The number of steps to sample.
98
+ rescale_t: The rescale factor for t.
99
+ verbose: If True, show a progress bar.
100
+ **kwargs: Additional arguments for model_inference.
101
+
102
+ Returns:
103
+ a dict containing the following
104
+ - 'samples': the model samples.
105
+ - 'pred_x_t': a list of prediction of x_t.
106
+ - 'pred_x_0': a list of prediction of x_0.
107
+ """
108
+ sample = noise
109
+ t_seq = np.linspace(1, 0, steps + 1)
110
+ t_seq = rescale_t * t_seq / (1 + (rescale_t - 1) * t_seq)
111
+ t_pairs = list((t_seq[i], t_seq[i + 1]) for i in range(steps))
112
+ ret = edict({"samples": None, "pred_x_t": [], "pred_x_0": []})
113
+ for t, t_prev in tqdm(t_pairs, desc="Sampling", disable=not verbose):
114
+ out = self.sample_once(model, sample, t, t_prev, cond, **kwargs)
115
+ sample = out.pred_x_prev
116
+ ret.pred_x_t.append(out.pred_x_prev)
117
+ ret.pred_x_0.append(out.pred_x_0)
118
+ ret.samples = sample
119
+ return ret
120
+
121
+
122
+ class FlowEulerCfgSampler(ClassifierFreeGuidanceSamplerMixin, FlowEulerSampler):
123
+ """
124
+ Generate samples from a flow-matching model using Euler sampling with classifier-free guidance.
125
+ """
126
+ @torch.no_grad()
127
+ def sample(
128
+ self,
129
+ model,
130
+ noise,
131
+ cond,
132
+ neg_cond,
133
+ steps: int = 50,
134
+ rescale_t: float = 1.0,
135
+ cfg_strength: float = 3.0,
136
+ verbose: bool = True,
137
+ **kwargs
138
+ ):
139
+ """
140
+ Generate samples from the model using Euler method.
141
+
142
+ Args:
143
+ model: The model to sample from.
144
+ noise: The initial noise tensor.
145
+ cond: conditional information.
146
+ neg_cond: negative conditional information.
147
+ steps: The number of steps to sample.
148
+ rescale_t: The rescale factor for t.
149
+ cfg_strength: The strength of classifier-free guidance.
150
+ verbose: If True, show a progress bar.
151
+ **kwargs: Additional arguments for model_inference.
152
+
153
+ Returns:
154
+ a dict containing the following
155
+ - 'samples': the model samples.
156
+ - 'pred_x_t': a list of prediction of x_t.
157
+ - 'pred_x_0': a list of prediction of x_0.
158
+ """
159
+ return super().sample(model, noise, cond, steps, rescale_t, verbose, neg_cond=neg_cond, cfg_strength=cfg_strength, **kwargs)
160
+
161
+
162
+ class FlowEulerGuidanceIntervalSampler(GuidanceIntervalSamplerMixin, FlowEulerSampler):
163
+ """
164
+ Generate samples from a flow-matching model using Euler sampling with classifier-free guidance and interval.
165
+ """
166
+ @torch.no_grad()
167
+ def sample(
168
+ self,
169
+ model,
170
+ noise,
171
+ cond,
172
+ neg_cond,
173
+ steps: int = 50,
174
+ rescale_t: float = 1.0,
175
+ cfg_strength: float = 3.0,
176
+ cfg_interval: Tuple[float, float] = (0.0, 1.0),
177
+ verbose: bool = True,
178
+ **kwargs
179
+ ):
180
+ """
181
+ Generate samples from the model using Euler method.
182
+
183
+ Args:
184
+ model: The model to sample from.
185
+ noise: The initial noise tensor.
186
+ cond: conditional information.
187
+ neg_cond: negative conditional information.
188
+ steps: The number of steps to sample.
189
+ rescale_t: The rescale factor for t.
190
+ cfg_strength: The strength of classifier-free guidance.
191
+ cfg_interval: The interval for classifier-free guidance.
192
+ verbose: If True, show a progress bar.
193
+ **kwargs: Additional arguments for model_inference.
194
+
195
+ Returns:
196
+ a dict containing the following
197
+ - 'samples': the model samples.
198
+ - 'pred_x_t': a list of prediction of x_t.
199
+ - 'pred_x_0': a list of prediction of x_0.
200
+ """
201
+ return super().sample(model, noise, cond, steps, rescale_t, verbose, neg_cond=neg_cond, cfg_strength=cfg_strength, cfg_interval=cfg_interval, **kwargs)
trellis/pipelines/samplers/guidance_interval_mixin.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+
3
+
4
+ class GuidanceIntervalSamplerMixin:
5
+ """
6
+ A mixin class for samplers that apply classifier-free guidance with interval.
7
+ """
8
+
9
+ def _inference_model(self, model, x_t, t, cond, neg_cond, cfg_strength, cfg_interval, **kwargs):
10
+ if cfg_interval[0] <= t <= cfg_interval[1]:
11
+ pred = super()._inference_model(model, x_t, t, cond, **kwargs)
12
+ neg_pred = super()._inference_model(model, x_t, t, neg_cond, **kwargs)
13
+ return (1 + cfg_strength) * pred - cfg_strength * neg_pred
14
+ else:
15
+ return super()._inference_model(model, x_t, t, cond, **kwargs)
trellis/pipelines/trellis_image_to_3d.py ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ from contextlib import contextmanager
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+ import numpy as np
7
+ from torchvision import transforms
8
+ from PIL import Image
9
+ import rembg
10
+ from .base import Pipeline
11
+ from . import samplers
12
+ from ..modules import sparse as sp
13
+
14
+
15
+ class TrellisImageTo3DPipeline(Pipeline):
16
+ """
17
+ Pipeline for inferring Trellis image-to-3D models.
18
+
19
+ Args:
20
+ models (dict[str, nn.Module]): The models to use in the pipeline.
21
+ sparse_structure_sampler (samplers.Sampler): The sampler for the sparse structure.
22
+ slat_sampler (samplers.Sampler): The sampler for the structured latent.
23
+ slat_normalization (dict): The normalization parameters for the structured latent.
24
+ image_cond_model (str): The name of the image conditioning model.
25
+ """
26
+ def __init__(
27
+ self,
28
+ models: dict[str, nn.Module] = None,
29
+ sparse_structure_sampler: samplers.Sampler = None,
30
+ slat_sampler: samplers.Sampler = None,
31
+ slat_normalization: dict = None,
32
+ image_cond_model: str = None,
33
+ ):
34
+ if models is None:
35
+ return
36
+ super().__init__(models)
37
+ self.sparse_structure_sampler = sparse_structure_sampler
38
+ self.slat_sampler = slat_sampler
39
+ self.sparse_structure_sampler_params = {}
40
+ self.slat_sampler_params = {}
41
+ self.slat_normalization = slat_normalization
42
+ self.rembg_session = None
43
+ self._init_image_cond_model(image_cond_model)
44
+
45
+ @staticmethod
46
+ def from_pretrained(path: str) -> "TrellisImageTo3DPipeline":
47
+ """
48
+ Load a pretrained model.
49
+
50
+ Args:
51
+ path (str): The path to the model. Can be either local path or a Hugging Face repository.
52
+ """
53
+ pipeline = super(TrellisImageTo3DPipeline, TrellisImageTo3DPipeline).from_pretrained(path)
54
+ new_pipeline = TrellisImageTo3DPipeline()
55
+ new_pipeline.__dict__ = pipeline.__dict__
56
+ args = pipeline._pretrained_args
57
+
58
+ new_pipeline.sparse_structure_sampler = getattr(samplers, args['sparse_structure_sampler']['name'])(**args['sparse_structure_sampler']['args'])
59
+ new_pipeline.sparse_structure_sampler_params = args['sparse_structure_sampler']['params']
60
+
61
+ new_pipeline.slat_sampler = getattr(samplers, args['slat_sampler']['name'])(**args['slat_sampler']['args'])
62
+ new_pipeline.slat_sampler_params = args['slat_sampler']['params']
63
+
64
+ new_pipeline.slat_normalization = args['slat_normalization']
65
+
66
+ new_pipeline._init_image_cond_model(args['image_cond_model'])
67
+
68
+ return new_pipeline
69
+
70
+ def _init_image_cond_model(self, name: str):
71
+ """
72
+ Initialize the image conditioning model.
73
+ """
74
+ dinov2_model = torch.hub.load('facebookresearch/dinov2', name, pretrained=True)
75
+ dinov2_model.eval()
76
+ self.models['image_cond_model'] = dinov2_model
77
+ transform = transforms.Compose([
78
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
79
+ ])
80
+ self.image_cond_model_transform = transform
81
+
82
+ def preprocess_image(self, input: Image.Image) -> Image.Image:
83
+ """
84
+ Preprocess the input image.
85
+ """
86
+ # if has alpha channel, use it directly; otherwise, remove background
87
+ has_alpha = False
88
+ if input.mode == 'RGBA':
89
+ alpha = np.array(input)[:, :, 3]
90
+ if not np.all(alpha == 255):
91
+ has_alpha = True
92
+ if has_alpha:
93
+ output = input
94
+ else:
95
+ input = input.convert('RGB')
96
+ max_size = max(input.size)
97
+ scale = min(1, 1024 / max_size)
98
+ if scale < 1:
99
+ input = input.resize((int(input.width * scale), int(input.height * scale)), Image.Resampling.LANCZOS)
100
+ if getattr(self, 'rembg_session', None) is None:
101
+ self.rembg_session = rembg.new_session('u2net')
102
+ output = rembg.remove(input, session=self.rembg_session)
103
+ output_np = np.array(output)
104
+ alpha = output_np[:, :, 3]
105
+ bbox = np.argwhere(alpha > 0.8 * 255)
106
+ bbox = np.min(bbox[:, 1]), np.min(bbox[:, 0]), np.max(bbox[:, 1]), np.max(bbox[:, 0])
107
+ center = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
108
+ size = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
109
+ size = int(size * 1.2)
110
+ bbox = center[0] - size // 2, center[1] - size // 2, center[0] + size // 2, center[1] + size // 2
111
+ output = output.crop(bbox) # type: ignore
112
+ output = output.resize((518, 518), Image.Resampling.LANCZOS)
113
+ output = np.array(output).astype(np.float32) / 255
114
+ output = output[:, :, :3] * output[:, :, 3:4]
115
+ output = Image.fromarray((output * 255).astype(np.uint8))
116
+ return output
117
+
118
+ @torch.no_grad()
119
+ def encode_image(self, image: Union[torch.Tensor, list[Image.Image]]) -> torch.Tensor:
120
+ """
121
+ Encode the image.
122
+
123
+ Args:
124
+ image (Union[torch.Tensor, list[Image.Image]]): The image to encode
125
+
126
+ Returns:
127
+ torch.Tensor: The encoded features.
128
+ """
129
+ if isinstance(image, torch.Tensor):
130
+ assert image.ndim == 4, "Image tensor should be batched (B, C, H, W)"
131
+ elif isinstance(image, list):
132
+ assert all(isinstance(i, Image.Image) for i in image), "Image list should be list of PIL images"
133
+ image = [i.resize((518, 518), Image.LANCZOS) for i in image]
134
+ image = [np.array(i.convert('RGB')).astype(np.float32) / 255 for i in image]
135
+ image = [torch.from_numpy(i).permute(2, 0, 1).float() for i in image]
136
+ image = torch.stack(image).to(self.device)
137
+ else:
138
+ raise ValueError(f"Unsupported type of image: {type(image)}")
139
+
140
+ image = self.image_cond_model_transform(image).to(self.device)
141
+ features = self.models['image_cond_model'](image, is_training=True)['x_prenorm']
142
+ patchtokens = F.layer_norm(features, features.shape[-1:])
143
+ return patchtokens
144
+
145
+ def get_cond(self, image: Union[torch.Tensor, list[Image.Image]]) -> dict:
146
+ """
147
+ Get the conditioning information for the model.
148
+
149
+ Args:
150
+ image (Union[torch.Tensor, list[Image.Image]]): The image prompts.
151
+
152
+ Returns:
153
+ dict: The conditioning information
154
+ """
155
+ cond = self.encode_image(image)
156
+ neg_cond = torch.zeros_like(cond)
157
+ return {
158
+ 'cond': cond,
159
+ 'neg_cond': neg_cond,
160
+ }
161
+
162
+ def sample_sparse_structure(
163
+ self,
164
+ cond: dict,
165
+ num_samples: int = 1,
166
+ sampler_params: dict = {},
167
+ ) -> torch.Tensor:
168
+ """
169
+ Sample sparse structures with the given conditioning.
170
+
171
+ Args:
172
+ cond (dict): The conditioning information.
173
+ num_samples (int): The number of samples to generate.
174
+ sampler_params (dict): Additional parameters for the sampler.
175
+ """
176
+ # Sample occupancy latent
177
+ flow_model = self.models['sparse_structure_flow_model']
178
+ reso = flow_model.resolution
179
+ noise = torch.randn(num_samples, flow_model.in_channels, reso, reso, reso).to(self.device)
180
+ sampler_params = {**self.sparse_structure_sampler_params, **sampler_params}
181
+ z_s = self.sparse_structure_sampler.sample(
182
+ flow_model,
183
+ noise,
184
+ **cond,
185
+ **sampler_params,
186
+ verbose=True
187
+ ).samples
188
+
189
+ # Decode occupancy latent
190
+ decoder = self.models['sparse_structure_decoder']
191
+ coords = torch.argwhere(decoder(z_s)>0)[:, [0, 2, 3, 4]].int()
192
+
193
+ return coords
194
+
195
+ def decode_slat(
196
+ self,
197
+ slat: sp.SparseTensor,
198
+ formats: List[str] = ['mesh', 'gaussian', 'radiance_field'],
199
+ ) -> dict:
200
+ """
201
+ Decode the structured latent.
202
+
203
+ Args:
204
+ slat (sp.SparseTensor): The structured latent.
205
+ formats (List[str]): The formats to decode the structured latent to.
206
+
207
+ Returns:
208
+ dict: The decoded structured latent.
209
+ """
210
+ ret = {}
211
+ if 'mesh' in formats:
212
+ ret['mesh'] = self.models['slat_decoder_mesh'](slat)
213
+ if 'gaussian' in formats:
214
+ ret['gaussian'] = self.models['slat_decoder_gs'](slat)
215
+ if 'radiance_field' in formats:
216
+ ret['radiance_field'] = self.models['slat_decoder_rf'](slat)
217
+ return ret
218
+
219
+ def sample_slat(
220
+ self,
221
+ cond: dict,
222
+ coords: torch.Tensor,
223
+ sampler_params: dict = {},
224
+ ) -> sp.SparseTensor:
225
+ """
226
+ Sample structured latent with the given conditioning.
227
+
228
+ Args:
229
+ cond (dict): The conditioning information.
230
+ coords (torch.Tensor): The coordinates of the sparse structure.
231
+ sampler_params (dict): Additional parameters for the sampler.
232
+ """
233
+ # Sample structured latent
234
+ flow_model = self.models['slat_flow_model']
235
+ noise = sp.SparseTensor(
236
+ feats=torch.randn(coords.shape[0], flow_model.in_channels).to(self.device),
237
+ coords=coords,
238
+ )
239
+ sampler_params = {**self.slat_sampler_params, **sampler_params}
240
+ slat = self.slat_sampler.sample(
241
+ flow_model,
242
+ noise,
243
+ **cond,
244
+ **sampler_params,
245
+ verbose=True
246
+ ).samples
247
+
248
+ std = torch.tensor(self.slat_normalization['std'])[None].to(slat.device)
249
+ mean = torch.tensor(self.slat_normalization['mean'])[None].to(slat.device)
250
+ slat = slat * std + mean
251
+
252
+ return slat
253
+
254
+ @torch.no_grad()
255
+ def run(
256
+ self,
257
+ image: Image.Image,
258
+ num_samples: int = 1,
259
+ seed: int = 42,
260
+ sparse_structure_sampler_params: dict = {},
261
+ slat_sampler_params: dict = {},
262
+ formats: List[str] = ['mesh', 'gaussian', 'radiance_field'],
263
+ preprocess_image: bool = True,
264
+ ) -> dict:
265
+ """
266
+ Run the pipeline.
267
+
268
+ Args:
269
+ image (Image.Image): The image prompt.
270
+ num_samples (int): The number of samples to generate.
271
+ seed (int): The random seed.
272
+ sparse_structure_sampler_params (dict): Additional parameters for the sparse structure sampler.
273
+ slat_sampler_params (dict): Additional parameters for the structured latent sampler.
274
+ formats (List[str]): The formats to decode the structured latent to.
275
+ preprocess_image (bool): Whether to preprocess the image.
276
+ """
277
+ if preprocess_image:
278
+ image = self.preprocess_image(image)
279
+ cond = self.get_cond([image])
280
+ torch.manual_seed(seed)
281
+ coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params)
282
+ slat = self.sample_slat(cond, coords, slat_sampler_params)
283
+ return self.decode_slat(slat, formats)
284
+
285
+ @contextmanager
286
+ def inject_sampler_multi_image(
287
+ self,
288
+ sampler_name: str,
289
+ num_images: int,
290
+ num_steps: int,
291
+ mode: Literal['stochastic', 'multidiffusion'] = 'stochastic',
292
+ ):
293
+ """
294
+ Inject a sampler with multiple images as condition.
295
+
296
+ Args:
297
+ sampler_name (str): The name of the sampler to inject.
298
+ num_images (int): The number of images to condition on.
299
+ num_steps (int): The number of steps to run the sampler for.
300
+ """
301
+ sampler = getattr(self, sampler_name)
302
+ setattr(sampler, f'_old_inference_model', sampler._inference_model)
303
+
304
+ if mode == 'stochastic':
305
+ if num_images > num_steps:
306
+ print(f"\033[93mWarning: number of conditioning images is greater than number of steps for {sampler_name}. "
307
+ "This may lead to performance degradation.\033[0m")
308
+
309
+ cond_indices = (np.arange(num_steps) % num_images).tolist()
310
+ def _new_inference_model(self, model, x_t, t, cond, **kwargs):
311
+ cond_idx = cond_indices.pop(0)
312
+ cond_i = cond[cond_idx:cond_idx+1]
313
+ return self._old_inference_model(model, x_t, t, cond=cond_i, **kwargs)
314
+
315
+ elif mode =='multidiffusion':
316
+ from .samplers import FlowEulerSampler
317
+ def _new_inference_model(self, model, x_t, t, cond, neg_cond, cfg_strength, cfg_interval, **kwargs):
318
+ if cfg_interval[0] <= t <= cfg_interval[1]:
319
+ preds = []
320
+ for i in range(len(cond)):
321
+ preds.append(FlowEulerSampler._inference_model(self, model, x_t, t, cond[i:i+1], **kwargs))
322
+ pred = sum(preds) / len(preds)
323
+ neg_pred = FlowEulerSampler._inference_model(self, model, x_t, t, neg_cond, **kwargs)
324
+ return (1 + cfg_strength) * pred - cfg_strength * neg_pred
325
+ else:
326
+ preds = []
327
+ for i in range(len(cond)):
328
+ preds.append(FlowEulerSampler._inference_model(self, model, x_t, t, cond[i:i+1], **kwargs))
329
+ pred = sum(preds) / len(preds)
330
+ return pred
331
+
332
+ else:
333
+ raise ValueError(f"Unsupported mode: {mode}")
334
+
335
+ sampler._inference_model = _new_inference_model.__get__(sampler, type(sampler))
336
+
337
+ yield
338
+
339
+ sampler._inference_model = sampler._old_inference_model
340
+ delattr(sampler, f'_old_inference_model')
341
+
342
+ @torch.no_grad()
343
+ def run_multi_image(
344
+ self,
345
+ images: List[Image.Image],
346
+ num_samples: int = 1,
347
+ seed: int = 42,
348
+ sparse_structure_sampler_params: dict = {},
349
+ slat_sampler_params: dict = {},
350
+ formats: List[str] = ['mesh', 'gaussian', 'radiance_field'],
351
+ preprocess_image: bool = True,
352
+ mode: Literal['stochastic', 'multidiffusion'] = 'stochastic',
353
+ ) -> dict:
354
+ """
355
+ Run the pipeline with multiple images as condition
356
+
357
+ Args:
358
+ images (List[Image.Image]): The multi-view images of the assets
359
+ num_samples (int): The number of samples to generate.
360
+ sparse_structure_sampler_params (dict): Additional parameters for the sparse structure sampler.
361
+ slat_sampler_params (dict): Additional parameters for the structured latent sampler.
362
+ preprocess_image (bool): Whether to preprocess the image.
363
+ """
364
+ if preprocess_image:
365
+ images = [self.preprocess_image(image) for image in images]
366
+ cond = self.get_cond(images)
367
+ cond['neg_cond'] = cond['neg_cond'][:1]
368
+ torch.manual_seed(seed)
369
+ ss_steps = {**self.sparse_structure_sampler_params, **sparse_structure_sampler_params}.get('steps')
370
+ with self.inject_sampler_multi_image('sparse_structure_sampler', len(images), ss_steps, mode=mode):
371
+ coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params)
372
+ slat_steps = {**self.slat_sampler_params, **slat_sampler_params}.get('steps')
373
+ with self.inject_sampler_multi_image('slat_sampler', len(images), slat_steps, mode=mode):
374
+ slat = self.sample_slat(cond, coords, slat_sampler_params)
375
+ return self.decode_slat(slat, formats)
trellis/pipelines/trellis_text_to_3d.py ADDED
@@ -0,0 +1,278 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ import torch
3
+ import torch.nn as nn
4
+ import numpy as np
5
+ from transformers import CLIPTextModel, AutoTokenizer
6
+ import open3d as o3d
7
+ from .base import Pipeline
8
+ from . import samplers
9
+ from ..modules import sparse as sp
10
+
11
+
12
+ class TrellisTextTo3DPipeline(Pipeline):
13
+ """
14
+ Pipeline for inferring Trellis text-to-3D models.
15
+
16
+ Args:
17
+ models (dict[str, nn.Module]): The models to use in the pipeline.
18
+ sparse_structure_sampler (samplers.Sampler): The sampler for the sparse structure.
19
+ slat_sampler (samplers.Sampler): The sampler for the structured latent.
20
+ slat_normalization (dict): The normalization parameters for the structured latent.
21
+ text_cond_model (str): The name of the text conditioning model.
22
+ """
23
+ def __init__(
24
+ self,
25
+ models: dict[str, nn.Module] = None,
26
+ sparse_structure_sampler: samplers.Sampler = None,
27
+ slat_sampler: samplers.Sampler = None,
28
+ slat_normalization: dict = None,
29
+ text_cond_model: str = None,
30
+ ):
31
+ if models is None:
32
+ return
33
+ super().__init__(models)
34
+ self.sparse_structure_sampler = sparse_structure_sampler
35
+ self.slat_sampler = slat_sampler
36
+ self.sparse_structure_sampler_params = {}
37
+ self.slat_sampler_params = {}
38
+ self.slat_normalization = slat_normalization
39
+ self._init_text_cond_model(text_cond_model)
40
+
41
+ @staticmethod
42
+ def from_pretrained(path: str) -> "TrellisTextTo3DPipeline":
43
+ """
44
+ Load a pretrained model.
45
+
46
+ Args:
47
+ path (str): The path to the model. Can be either local path or a Hugging Face repository.
48
+ """
49
+ pipeline = super(TrellisTextTo3DPipeline, TrellisTextTo3DPipeline).from_pretrained(path)
50
+ new_pipeline = TrellisTextTo3DPipeline()
51
+ new_pipeline.__dict__ = pipeline.__dict__
52
+ args = pipeline._pretrained_args
53
+
54
+ new_pipeline.sparse_structure_sampler = getattr(samplers, args['sparse_structure_sampler']['name'])(**args['sparse_structure_sampler']['args'])
55
+ new_pipeline.sparse_structure_sampler_params = args['sparse_structure_sampler']['params']
56
+
57
+ new_pipeline.slat_sampler = getattr(samplers, args['slat_sampler']['name'])(**args['slat_sampler']['args'])
58
+ new_pipeline.slat_sampler_params = args['slat_sampler']['params']
59
+
60
+ new_pipeline.slat_normalization = args['slat_normalization']
61
+
62
+ new_pipeline._init_text_cond_model(args['text_cond_model'])
63
+
64
+ return new_pipeline
65
+
66
+ def _init_text_cond_model(self, name: str):
67
+ """
68
+ Initialize the text conditioning model.
69
+ """
70
+ # load model
71
+ model = CLIPTextModel.from_pretrained(name)
72
+ tokenizer = AutoTokenizer.from_pretrained(name)
73
+ model.eval()
74
+ model = model.cuda()
75
+ self.text_cond_model = {
76
+ 'model': model,
77
+ 'tokenizer': tokenizer,
78
+ }
79
+ self.text_cond_model['null_cond'] = self.encode_text([''])
80
+
81
+ @torch.no_grad()
82
+ def encode_text(self, text: List[str]) -> torch.Tensor:
83
+ """
84
+ Encode the text.
85
+ """
86
+ assert isinstance(text, list) and all(isinstance(t, str) for t in text), "text must be a list of strings"
87
+ encoding = self.text_cond_model['tokenizer'](text, max_length=77, padding='max_length', truncation=True, return_tensors='pt')
88
+ tokens = encoding['input_ids'].cuda()
89
+ embeddings = self.text_cond_model['model'](input_ids=tokens).last_hidden_state
90
+
91
+ return embeddings
92
+
93
+ def get_cond(self, prompt: List[str]) -> dict:
94
+ """
95
+ Get the conditioning information for the model.
96
+
97
+ Args:
98
+ prompt (List[str]): The text prompt.
99
+
100
+ Returns:
101
+ dict: The conditioning information
102
+ """
103
+ cond = self.encode_text(prompt)
104
+ neg_cond = self.text_cond_model['null_cond']
105
+ return {
106
+ 'cond': cond,
107
+ 'neg_cond': neg_cond,
108
+ }
109
+
110
+ def sample_sparse_structure(
111
+ self,
112
+ cond: dict,
113
+ num_samples: int = 1,
114
+ sampler_params: dict = {},
115
+ ) -> torch.Tensor:
116
+ """
117
+ Sample sparse structures with the given conditioning.
118
+
119
+ Args:
120
+ cond (dict): The conditioning information.
121
+ num_samples (int): The number of samples to generate.
122
+ sampler_params (dict): Additional parameters for the sampler.
123
+ """
124
+ # Sample occupancy latent
125
+ flow_model = self.models['sparse_structure_flow_model']
126
+ reso = flow_model.resolution
127
+ noise = torch.randn(num_samples, flow_model.in_channels, reso, reso, reso).to(self.device)
128
+ sampler_params = {**self.sparse_structure_sampler_params, **sampler_params}
129
+ z_s = self.sparse_structure_sampler.sample(
130
+ flow_model,
131
+ noise,
132
+ **cond,
133
+ **sampler_params,
134
+ verbose=True
135
+ ).samples
136
+
137
+ # Decode occupancy latent
138
+ decoder = self.models['sparse_structure_decoder']
139
+ coords = torch.argwhere(decoder(z_s)>0)[:, [0, 2, 3, 4]].int()
140
+
141
+ return coords
142
+
143
+ def decode_slat(
144
+ self,
145
+ slat: sp.SparseTensor,
146
+ formats: List[str] = ['mesh', 'gaussian', 'radiance_field'],
147
+ ) -> dict:
148
+ """
149
+ Decode the structured latent.
150
+
151
+ Args:
152
+ slat (sp.SparseTensor): The structured latent.
153
+ formats (List[str]): The formats to decode the structured latent to.
154
+
155
+ Returns:
156
+ dict: The decoded structured latent.
157
+ """
158
+ ret = {}
159
+ if 'mesh' in formats:
160
+ ret['mesh'] = self.models['slat_decoder_mesh'](slat)
161
+ if 'gaussian' in formats:
162
+ ret['gaussian'] = self.models['slat_decoder_gs'](slat)
163
+ if 'radiance_field' in formats:
164
+ ret['radiance_field'] = self.models['slat_decoder_rf'](slat)
165
+ return ret
166
+
167
+ def sample_slat(
168
+ self,
169
+ cond: dict,
170
+ coords: torch.Tensor,
171
+ sampler_params: dict = {},
172
+ ) -> sp.SparseTensor:
173
+ """
174
+ Sample structured latent with the given conditioning.
175
+
176
+ Args:
177
+ cond (dict): The conditioning information.
178
+ coords (torch.Tensor): The coordinates of the sparse structure.
179
+ sampler_params (dict): Additional parameters for the sampler.
180
+ """
181
+ # Sample structured latent
182
+ flow_model = self.models['slat_flow_model']
183
+ noise = sp.SparseTensor(
184
+ feats=torch.randn(coords.shape[0], flow_model.in_channels).to(self.device),
185
+ coords=coords,
186
+ )
187
+ sampler_params = {**self.slat_sampler_params, **sampler_params}
188
+ slat = self.slat_sampler.sample(
189
+ flow_model,
190
+ noise,
191
+ **cond,
192
+ **sampler_params,
193
+ verbose=True
194
+ ).samples
195
+
196
+ std = torch.tensor(self.slat_normalization['std'])[None].to(slat.device)
197
+ mean = torch.tensor(self.slat_normalization['mean'])[None].to(slat.device)
198
+ slat = slat * std + mean
199
+
200
+ return slat
201
+
202
+ @torch.no_grad()
203
+ def run(
204
+ self,
205
+ prompt: str,
206
+ num_samples: int = 1,
207
+ seed: int = 42,
208
+ sparse_structure_sampler_params: dict = {},
209
+ slat_sampler_params: dict = {},
210
+ formats: List[str] = ['mesh', 'gaussian', 'radiance_field'],
211
+ ) -> dict:
212
+ """
213
+ Run the pipeline.
214
+
215
+ Args:
216
+ prompt (str): The text prompt.
217
+ num_samples (int): The number of samples to generate.
218
+ seed (int): The random seed.
219
+ sparse_structure_sampler_params (dict): Additional parameters for the sparse structure sampler.
220
+ slat_sampler_params (dict): Additional parameters for the structured latent sampler.
221
+ formats (List[str]): The formats to decode the structured latent to.
222
+ """
223
+ cond = self.get_cond([prompt])
224
+ torch.manual_seed(seed)
225
+ coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params)
226
+ slat = self.sample_slat(cond, coords, slat_sampler_params)
227
+ return self.decode_slat(slat, formats)
228
+
229
+ def voxelize(self, mesh: o3d.geometry.TriangleMesh) -> torch.Tensor:
230
+ """
231
+ Voxelize a mesh.
232
+
233
+ Args:
234
+ mesh (o3d.geometry.TriangleMesh): The mesh to voxelize.
235
+ sha256 (str): The SHA256 hash of the mesh.
236
+ output_dir (str): The output directory.
237
+ """
238
+ vertices = np.asarray(mesh.vertices)
239
+ aabb = np.stack([vertices.min(0), vertices.max(0)])
240
+ center = (aabb[0] + aabb[1]) / 2
241
+ scale = (aabb[1] - aabb[0]).max()
242
+ vertices = (vertices - center) / scale
243
+ vertices = np.clip(vertices, -0.5 + 1e-6, 0.5 - 1e-6)
244
+ mesh.vertices = o3d.utility.Vector3dVector(vertices)
245
+ voxel_grid = o3d.geometry.VoxelGrid.create_from_triangle_mesh_within_bounds(mesh, voxel_size=1/64, min_bound=(-0.5, -0.5, -0.5), max_bound=(0.5, 0.5, 0.5))
246
+ vertices = np.array([voxel.grid_index for voxel in voxel_grid.get_voxels()])
247
+ return torch.tensor(vertices).int().cuda()
248
+
249
+ @torch.no_grad()
250
+ def run_variant(
251
+ self,
252
+ mesh: o3d.geometry.TriangleMesh,
253
+ prompt: str,
254
+ num_samples: int = 1,
255
+ seed: int = 42,
256
+ slat_sampler_params: dict = {},
257
+ formats: List[str] = ['mesh', 'gaussian', 'radiance_field'],
258
+ ) -> dict:
259
+ """
260
+ Run the pipeline for making variants of an asset.
261
+
262
+ Args:
263
+ mesh (o3d.geometry.TriangleMesh): The base mesh.
264
+ prompt (str): The text prompt.
265
+ num_samples (int): The number of samples to generate.
266
+ seed (int): The random seed
267
+ slat_sampler_params (dict): Additional parameters for the structured latent sampler.
268
+ formats (List[str]): The formats to decode the structured latent to.
269
+ """
270
+ cond = self.get_cond([prompt])
271
+ coords = self.voxelize(mesh)
272
+ coords = torch.cat([
273
+ torch.arange(num_samples).repeat_interleave(coords.shape[0], 0)[:, None].int().cuda(),
274
+ coords.repeat(num_samples, 1)
275
+ ], 1)
276
+ torch.manual_seed(seed)
277
+ slat = self.sample_slat(cond, coords, slat_sampler_params)
278
+ return self.decode_slat(slat, formats)