Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
from math import exp | |
from lpips import LPIPS | |
def smooth_l1_loss(pred, target, beta=1.0): | |
diff = torch.abs(pred - target) | |
loss = torch.where(diff < beta, 0.5 * diff ** 2 / beta, diff - 0.5 * beta) | |
return loss.mean() | |
def l1_loss(network_output, gt): | |
return torch.abs((network_output - gt)).mean() | |
def l2_loss(network_output, gt): | |
return ((network_output - gt) ** 2).mean() | |
def gaussian(window_size, sigma): | |
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)]) | |
return gauss / gauss.sum() | |
def create_window(window_size, channel): | |
_1D_window = gaussian(window_size, 1.5).unsqueeze(1) | |
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) | |
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous()) | |
return window | |
def psnr(img1, img2, max_val=1.0): | |
mse = F.mse_loss(img1, img2) | |
return 20 * torch.log10(max_val / torch.sqrt(mse)) | |
def ssim(img1, img2, window_size=11, size_average=True): | |
channel = img1.size(-3) | |
window = create_window(window_size, channel) | |
if img1.is_cuda: | |
window = window.cuda(img1.get_device()) | |
window = window.type_as(img1) | |
return _ssim(img1, img2, window, window_size, channel, size_average) | |
def _ssim(img1, img2, window, window_size, channel, size_average=True): | |
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) | |
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) | |
mu1_sq = mu1.pow(2) | |
mu2_sq = mu2.pow(2) | |
mu1_mu2 = mu1 * mu2 | |
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq | |
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq | |
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2 | |
C1 = 0.01 ** 2 | |
C2 = 0.03 ** 2 | |
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) | |
if size_average: | |
return ssim_map.mean() | |
else: | |
return ssim_map.mean(1).mean(1).mean(1) | |
loss_fn_vgg = None | |
def lpips(img1, img2, value_range=(0, 1)): | |
global loss_fn_vgg | |
if loss_fn_vgg is None: | |
loss_fn_vgg = LPIPS(net='vgg').cuda().eval() | |
# normalize to [-1, 1] | |
img1 = (img1 - value_range[0]) / (value_range[1] - value_range[0]) * 2 - 1 | |
img2 = (img2 - value_range[0]) / (value_range[1] - value_range[0]) * 2 - 1 | |
return loss_fn_vgg(img1, img2).mean() | |
def normal_angle(pred, gt): | |
pred = pred * 2.0 - 1.0 | |
gt = gt * 2.0 - 1.0 | |
norms = pred.norm(dim=-1) * gt.norm(dim=-1) | |
cos_sim = (pred * gt).sum(-1) / (norms + 1e-9) | |
cos_sim = torch.clamp(cos_sim, -1.0, 1.0) | |
ang = torch.rad2deg(torch.acos(cos_sim[norms > 1e-9])).mean() | |
if ang.isnan(): | |
return -1 | |
return ang | |