Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import json | |
import copy | |
import sys | |
import importlib | |
import argparse | |
import pandas as pd | |
from easydict import EasyDict as edict | |
from functools import partial | |
from subprocess import DEVNULL, call | |
import numpy as np | |
from utils import sphere_hammersley_sequence | |
BLENDER_LINK = 'https://download.blender.org/release/Blender3.0/blender-3.0.1-linux-x64.tar.xz' | |
BLENDER_INSTALLATION_PATH = '/tmp' | |
BLENDER_PATH = f'{BLENDER_INSTALLATION_PATH}/blender-3.0.1-linux-x64/blender' | |
def _install_blender(): | |
if not os.path.exists(BLENDER_PATH): | |
os.system('sudo apt-get update') | |
os.system('sudo apt-get install -y libxrender1 libxi6 libxkbcommon-x11-0 libsm6') | |
os.system(f'wget {BLENDER_LINK} -P {BLENDER_INSTALLATION_PATH}') | |
os.system(f'tar -xvf {BLENDER_INSTALLATION_PATH}/blender-3.0.1-linux-x64.tar.xz -C {BLENDER_INSTALLATION_PATH}') | |
def _render_cond(file_path, sha256, output_dir, num_views): | |
output_folder = os.path.join(output_dir, 'renders_cond', sha256) | |
# Build camera {yaw, pitch, radius, fov} | |
yaws = [] | |
pitchs = [] | |
offset = (np.random.rand(), np.random.rand()) | |
for i in range(num_views): | |
y, p = sphere_hammersley_sequence(i, num_views, offset) | |
yaws.append(y) | |
pitchs.append(p) | |
fov_min, fov_max = 10, 70 | |
radius_min = np.sqrt(3) / 2 / np.sin(fov_max / 360 * np.pi) | |
radius_max = np.sqrt(3) / 2 / np.sin(fov_min / 360 * np.pi) | |
k_min = 1 / radius_max**2 | |
k_max = 1 / radius_min**2 | |
ks = np.random.uniform(k_min, k_max, (1000000,)) | |
radius = [1 / np.sqrt(k) for k in ks] | |
fov = [2 * np.arcsin(np.sqrt(3) / 2 / r) for r in radius] | |
views = [{'yaw': y, 'pitch': p, 'radius': r, 'fov': f} for y, p, r, f in zip(yaws, pitchs, radius, fov)] | |
args = [ | |
BLENDER_PATH, '-b', '-P', os.path.join(os.path.dirname(__file__), 'blender_script', 'render.py'), | |
'--', | |
'--views', json.dumps(views), | |
'--object', os.path.expanduser(file_path), | |
'--output_folder', os.path.expanduser(output_folder), | |
'--resolution', '1024', | |
] | |
if file_path.endswith('.blend'): | |
args.insert(1, file_path) | |
call(args, stdout=DEVNULL) | |
if os.path.exists(os.path.join(output_folder, 'transforms.json')): | |
return {'sha256': sha256, 'cond_rendered': True} | |
if __name__ == '__main__': | |
dataset_utils = importlib.import_module(f'datasets.{sys.argv[1]}') | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--output_dir', type=str, required=True, | |
help='Directory to save the metadata') | |
parser.add_argument('--filter_low_aesthetic_score', type=float, default=None, | |
help='Filter objects with aesthetic score lower than this value') | |
parser.add_argument('--instances', type=str, default=None, | |
help='Instances to process') | |
parser.add_argument('--num_views', type=int, default=24, | |
help='Number of views to render') | |
dataset_utils.add_args(parser) | |
parser.add_argument('--rank', type=int, default=0) | |
parser.add_argument('--world_size', type=int, default=1) | |
parser.add_argument('--max_workers', type=int, default=8) | |
opt = parser.parse_args(sys.argv[2:]) | |
opt = edict(vars(opt)) | |
os.makedirs(os.path.join(opt.output_dir, 'renders_cond'), exist_ok=True) | |
# install blender | |
print('Checking blender...', flush=True) | |
_install_blender() | |
# get file list | |
if not os.path.exists(os.path.join(opt.output_dir, 'metadata.csv')): | |
raise ValueError('metadata.csv not found') | |
metadata = pd.read_csv(os.path.join(opt.output_dir, 'metadata.csv')) | |
if opt.instances is None: | |
metadata = metadata[metadata['local_path'].notna()] | |
if opt.filter_low_aesthetic_score is not None: | |
metadata = metadata[metadata['aesthetic_score'] >= opt.filter_low_aesthetic_score] | |
if 'cond_rendered' in metadata.columns: | |
metadata = metadata[metadata['cond_rendered'] == False] | |
else: | |
if os.path.exists(opt.instances): | |
with open(opt.instances, 'r') as f: | |
instances = f.read().splitlines() | |
else: | |
instances = opt.instances.split(',') | |
metadata = metadata[metadata['sha256'].isin(instances)] | |
start = len(metadata) * opt.rank // opt.world_size | |
end = len(metadata) * (opt.rank + 1) // opt.world_size | |
metadata = metadata[start:end] | |
records = [] | |
# filter out objects that are already processed | |
for sha256 in copy.copy(metadata['sha256'].values): | |
if os.path.exists(os.path.join(opt.output_dir, 'renders_cond', sha256, 'transforms.json')): | |
records.append({'sha256': sha256, 'cond_rendered': True}) | |
metadata = metadata[metadata['sha256'] != sha256] | |
print(f'Processing {len(metadata)} objects...') | |
# process objects | |
func = partial(_render_cond, output_dir=opt.output_dir, num_views=opt.num_views) | |
cond_rendered = dataset_utils.foreach_instance(metadata, opt.output_dir, func, max_workers=opt.max_workers, desc='Rendering objects') | |
cond_rendered = pd.concat([cond_rendered, pd.DataFrame.from_records(records)]) | |
cond_rendered.to_csv(os.path.join(opt.output_dir, f'cond_rendered_{opt.rank}.csv'), index=False) | |