Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import sys | |
sys.path.append(os.path.join(os.path.dirname(__file__), '..')) | |
import copy | |
import json | |
import argparse | |
import torch | |
import numpy as np | |
import pandas as pd | |
import utils3d | |
from tqdm import tqdm | |
from easydict import EasyDict as edict | |
from concurrent.futures import ThreadPoolExecutor | |
from queue import Queue | |
import trellis.models as models | |
torch.set_grad_enabled(False) | |
def get_voxels(instance): | |
position = utils3d.io.read_ply(os.path.join(opt.output_dir, 'voxels', f'{instance}.ply'))[0] | |
coords = ((torch.tensor(position) + 0.5) * opt.resolution).int().contiguous() | |
ss = torch.zeros(1, opt.resolution, opt.resolution, opt.resolution, dtype=torch.long) | |
ss[:, coords[:, 0], coords[:, 1], coords[:, 2]] = 1 | |
return ss | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--output_dir', type=str, required=True, | |
help='Directory to save the metadata') | |
parser.add_argument('--filter_low_aesthetic_score', type=float, default=None, | |
help='Filter objects with aesthetic score lower than this value') | |
parser.add_argument('--enc_pretrained', type=str, default='JeffreyXiang/TRELLIS-image-large/ckpts/ss_enc_conv3d_16l8_fp16', | |
help='Pretrained encoder model') | |
parser.add_argument('--model_root', type=str, default='results', | |
help='Root directory of models') | |
parser.add_argument('--enc_model', type=str, default=None, | |
help='Encoder model. if specified, use this model instead of pretrained model') | |
parser.add_argument('--ckpt', type=str, default=None, | |
help='Checkpoint to load') | |
parser.add_argument('--resolution', type=int, default=64, | |
help='Resolution') | |
parser.add_argument('--instances', type=str, default=None, | |
help='Instances to process') | |
parser.add_argument('--rank', type=int, default=0) | |
parser.add_argument('--world_size', type=int, default=1) | |
opt = parser.parse_args() | |
opt = edict(vars(opt)) | |
if opt.enc_model is None: | |
latent_name = f'{opt.enc_pretrained.split("/")[-1]}' | |
encoder = models.from_pretrained(opt.enc_pretrained).eval().cuda() | |
else: | |
latent_name = f'{opt.enc_model}_{opt.ckpt}' | |
cfg = edict(json.load(open(os.path.join(opt.model_root, opt.enc_model, 'config.json'), 'r'))) | |
encoder = getattr(models, cfg.models.encoder.name)(**cfg.models.encoder.args).cuda() | |
ckpt_path = os.path.join(opt.model_root, opt.enc_model, 'ckpts', f'encoder_{opt.ckpt}.pt') | |
encoder.load_state_dict(torch.load(ckpt_path), strict=False) | |
encoder.eval() | |
print(f'Loaded model from {ckpt_path}') | |
os.makedirs(os.path.join(opt.output_dir, 'ss_latents', latent_name), exist_ok=True) | |
# get file list | |
if os.path.exists(os.path.join(opt.output_dir, 'metadata.csv')): | |
metadata = pd.read_csv(os.path.join(opt.output_dir, 'metadata.csv')) | |
else: | |
raise ValueError('metadata.csv not found') | |
if opt.instances is not None: | |
with open(opt.instances, 'r') as f: | |
instances = f.read().splitlines() | |
metadata = metadata[metadata['sha256'].isin(instances)] | |
else: | |
if opt.filter_low_aesthetic_score is not None: | |
metadata = metadata[metadata['aesthetic_score'] >= opt.filter_low_aesthetic_score] | |
metadata = metadata[metadata['voxelized'] == True] | |
if f'ss_latent_{latent_name}' in metadata.columns: | |
metadata = metadata[metadata[f'ss_latent_{latent_name}'] == False] | |
start = len(metadata) * opt.rank // opt.world_size | |
end = len(metadata) * (opt.rank + 1) // opt.world_size | |
metadata = metadata[start:end] | |
records = [] | |
# filter out objects that are already processed | |
sha256s = list(metadata['sha256'].values) | |
for sha256 in copy.copy(sha256s): | |
if os.path.exists(os.path.join(opt.output_dir, 'ss_latents', latent_name, f'{sha256}.npz')): | |
records.append({'sha256': sha256, f'ss_latent_{latent_name}': True}) | |
sha256s.remove(sha256) | |
# encode latents | |
load_queue = Queue(maxsize=4) | |
try: | |
with ThreadPoolExecutor(max_workers=32) as loader_executor, \ | |
ThreadPoolExecutor(max_workers=32) as saver_executor: | |
def loader(sha256): | |
try: | |
ss = get_voxels(sha256)[None].float() | |
load_queue.put((sha256, ss)) | |
except Exception as e: | |
print(f"Error loading features for {sha256}: {e}") | |
loader_executor.map(loader, sha256s) | |
def saver(sha256, pack): | |
save_path = os.path.join(opt.output_dir, 'ss_latents', latent_name, f'{sha256}.npz') | |
np.savez_compressed(save_path, **pack) | |
records.append({'sha256': sha256, f'ss_latent_{latent_name}': True}) | |
for _ in tqdm(range(len(sha256s)), desc="Extracting latents"): | |
sha256, ss = load_queue.get() | |
ss = ss.cuda().float() | |
latent = encoder(ss, sample_posterior=False) | |
assert torch.isfinite(latent).all(), "Non-finite latent" | |
pack = { | |
'mean': latent[0].cpu().numpy(), | |
} | |
saver_executor.submit(saver, sha256, pack) | |
saver_executor.shutdown(wait=True) | |
except: | |
print("Error happened during processing.") | |
records = pd.DataFrame.from_records(records) | |
records.to_csv(os.path.join(opt.output_dir, f'ss_latent_{latent_name}_{opt.rank}.csv'), index=False) | |