Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import copy | |
import sys | |
import importlib | |
import argparse | |
import pandas as pd | |
from easydict import EasyDict as edict | |
if __name__ == '__main__': | |
dataset_utils = importlib.import_module(f'datasets.{sys.argv[1]}') | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--output_dir', type=str, required=True, | |
help='Directory to save the metadata') | |
parser.add_argument('--filter_low_aesthetic_score', type=float, default=None, | |
help='Filter objects with aesthetic score lower than this value') | |
parser.add_argument('--instances', type=str, default=None, | |
help='Instances to process') | |
dataset_utils.add_args(parser) | |
parser.add_argument('--rank', type=int, default=0) | |
parser.add_argument('--world_size', type=int, default=1) | |
opt = parser.parse_args(sys.argv[2:]) | |
opt = edict(vars(opt)) | |
os.makedirs(opt.output_dir, exist_ok=True) | |
# get file list | |
if not os.path.exists(os.path.join(opt.output_dir, 'metadata.csv')): | |
raise ValueError('metadata.csv not found') | |
metadata = pd.read_csv(os.path.join(opt.output_dir, 'metadata.csv')) | |
if opt.instances is None: | |
if opt.filter_low_aesthetic_score is not None: | |
metadata = metadata[metadata['aesthetic_score'] >= opt.filter_low_aesthetic_score] | |
if 'local_path' in metadata.columns: | |
metadata = metadata[metadata['local_path'].isna()] | |
else: | |
if os.path.exists(opt.instances): | |
with open(opt.instances, 'r') as f: | |
instances = f.read().splitlines() | |
else: | |
instances = opt.instances.split(',') | |
metadata = metadata[metadata['sha256'].isin(instances)] | |
start = len(metadata) * opt.rank // opt.world_size | |
end = len(metadata) * (opt.rank + 1) // opt.world_size | |
metadata = metadata[start:end] | |
print(f'Processing {len(metadata)} objects...') | |
# process objects | |
downloaded = dataset_utils.download(metadata, **opt) | |
downloaded.to_csv(os.path.join(opt.output_dir, f'downloaded_{opt.rank}.csv'), index=False) | |