Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import shutil | |
import sys | |
import time | |
import importlib | |
import argparse | |
import numpy as np | |
import pandas as pd | |
from tqdm import tqdm | |
from easydict import EasyDict as edict | |
from concurrent.futures import ThreadPoolExecutor | |
import utils3d | |
def get_first_directory(path): | |
with os.scandir(path) as it: | |
for entry in it: | |
if entry.is_dir(): | |
return entry.name | |
return None | |
def need_process(key): | |
return key in opt.field or opt.field == ['all'] | |
if __name__ == '__main__': | |
dataset_utils = importlib.import_module(f'datasets.{sys.argv[1]}') | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--output_dir', type=str, required=True, | |
help='Directory to save the metadata') | |
parser.add_argument('--field', type=str, default='all', | |
help='Fields to process, separated by commas') | |
parser.add_argument('--from_file', action='store_true', | |
help='Build metadata from file instead of from records of processings.' + | |
'Useful when some processing fail to generate records but file already exists.') | |
dataset_utils.add_args(parser) | |
opt = parser.parse_args(sys.argv[2:]) | |
opt = edict(vars(opt)) | |
os.makedirs(opt.output_dir, exist_ok=True) | |
os.makedirs(os.path.join(opt.output_dir, 'merged_records'), exist_ok=True) | |
opt.field = opt.field.split(',') | |
timestamp = str(int(time.time())) | |
# get file list | |
if os.path.exists(os.path.join(opt.output_dir, 'metadata.csv')): | |
print('Loading previous metadata...') | |
metadata = pd.read_csv(os.path.join(opt.output_dir, 'metadata.csv')) | |
else: | |
metadata = dataset_utils.get_metadata(**opt) | |
metadata.set_index('sha256', inplace=True) | |
# merge downloaded | |
df_files = [f for f in os.listdir(opt.output_dir) if f.startswith('downloaded_') and f.endswith('.csv')] | |
df_parts = [] | |
for f in df_files: | |
try: | |
df_parts.append(pd.read_csv(os.path.join(opt.output_dir, f))) | |
except: | |
pass | |
if len(df_parts) > 0: | |
df = pd.concat(df_parts) | |
df.set_index('sha256', inplace=True) | |
if 'local_path' in metadata.columns: | |
metadata.update(df, overwrite=True) | |
else: | |
metadata = metadata.join(df, on='sha256', how='left') | |
for f in df_files: | |
shutil.move(os.path.join(opt.output_dir, f), os.path.join(opt.output_dir, 'merged_records', f'{timestamp}_{f}')) | |
# detect models | |
image_models = [] | |
if os.path.exists(os.path.join(opt.output_dir, 'features')): | |
image_models = os.listdir(os.path.join(opt.output_dir, 'features')) | |
latent_models = [] | |
if os.path.exists(os.path.join(opt.output_dir, 'latents')): | |
latent_models = os.listdir(os.path.join(opt.output_dir, 'latents')) | |
ss_latent_models = [] | |
if os.path.exists(os.path.join(opt.output_dir, 'ss_latents')): | |
ss_latent_models = os.listdir(os.path.join(opt.output_dir, 'ss_latents')) | |
print(f'Image models: {image_models}') | |
print(f'Latent models: {latent_models}') | |
print(f'Sparse Structure latent models: {ss_latent_models}') | |
if 'rendered' not in metadata.columns: | |
metadata['rendered'] = [False] * len(metadata) | |
if 'voxelized' not in metadata.columns: | |
metadata['voxelized'] = [False] * len(metadata) | |
if 'num_voxels' not in metadata.columns: | |
metadata['num_voxels'] = [0] * len(metadata) | |
if 'cond_rendered' not in metadata.columns: | |
metadata['cond_rendered'] = [False] * len(metadata) | |
for model in image_models: | |
if f'feature_{model}' not in metadata.columns: | |
metadata[f'feature_{model}'] = [False] * len(metadata) | |
for model in latent_models: | |
if f'latent_{model}' not in metadata.columns: | |
metadata[f'latent_{model}'] = [False] * len(metadata) | |
for model in ss_latent_models: | |
if f'ss_latent_{model}' not in metadata.columns: | |
metadata[f'ss_latent_{model}'] = [False] * len(metadata) | |
# merge rendered | |
df_files = [f for f in os.listdir(opt.output_dir) if f.startswith('rendered_') and f.endswith('.csv')] | |
df_parts = [] | |
for f in df_files: | |
try: | |
df_parts.append(pd.read_csv(os.path.join(opt.output_dir, f))) | |
except: | |
pass | |
if len(df_parts) > 0: | |
df = pd.concat(df_parts) | |
df.set_index('sha256', inplace=True) | |
metadata.update(df, overwrite=True) | |
for f in df_files: | |
shutil.move(os.path.join(opt.output_dir, f), os.path.join(opt.output_dir, 'merged_records', f'{timestamp}_{f}')) | |
# merge voxelized | |
df_files = [f for f in os.listdir(opt.output_dir) if f.startswith('voxelized_') and f.endswith('.csv')] | |
df_parts = [] | |
for f in df_files: | |
try: | |
df_parts.append(pd.read_csv(os.path.join(opt.output_dir, f))) | |
except: | |
pass | |
if len(df_parts) > 0: | |
df = pd.concat(df_parts) | |
df.set_index('sha256', inplace=True) | |
metadata.update(df, overwrite=True) | |
for f in df_files: | |
shutil.move(os.path.join(opt.output_dir, f), os.path.join(opt.output_dir, 'merged_records', f'{timestamp}_{f}')) | |
# merge cond_rendered | |
df_files = [f for f in os.listdir(opt.output_dir) if f.startswith('cond_rendered_') and f.endswith('.csv')] | |
df_parts = [] | |
for f in df_files: | |
try: | |
df_parts.append(pd.read_csv(os.path.join(opt.output_dir, f))) | |
except: | |
pass | |
if len(df_parts) > 0: | |
df = pd.concat(df_parts) | |
df.set_index('sha256', inplace=True) | |
metadata.update(df, overwrite=True) | |
for f in df_files: | |
shutil.move(os.path.join(opt.output_dir, f), os.path.join(opt.output_dir, 'merged_records', f'{timestamp}_{f}')) | |
# merge features | |
for model in image_models: | |
df_files = [f for f in os.listdir(opt.output_dir) if f.startswith(f'feature_{model}_') and f.endswith('.csv')] | |
df_parts = [] | |
for f in df_files: | |
try: | |
df_parts.append(pd.read_csv(os.path.join(opt.output_dir, f))) | |
except: | |
pass | |
if len(df_parts) > 0: | |
df = pd.concat(df_parts) | |
df.set_index('sha256', inplace=True) | |
metadata.update(df, overwrite=True) | |
for f in df_files: | |
shutil.move(os.path.join(opt.output_dir, f), os.path.join(opt.output_dir, 'merged_records', f'{timestamp}_{f}')) | |
# merge latents | |
for model in latent_models: | |
df_files = [f for f in os.listdir(opt.output_dir) if f.startswith(f'latent_{model}_') and f.endswith('.csv')] | |
df_parts = [] | |
for f in df_files: | |
try: | |
df_parts.append(pd.read_csv(os.path.join(opt.output_dir, f))) | |
except: | |
pass | |
if len(df_parts) > 0: | |
df = pd.concat(df_parts) | |
df.set_index('sha256', inplace=True) | |
metadata.update(df, overwrite=True) | |
for f in df_files: | |
shutil.move(os.path.join(opt.output_dir, f), os.path.join(opt.output_dir, 'merged_records', f'{timestamp}_{f}')) | |
# merge sparse structure latents | |
for model in ss_latent_models: | |
df_files = [f for f in os.listdir(opt.output_dir) if f.startswith(f'ss_latent_{model}_') and f.endswith('.csv')] | |
df_parts = [] | |
for f in df_files: | |
try: | |
df_parts.append(pd.read_csv(os.path.join(opt.output_dir, f))) | |
except: | |
pass | |
if len(df_parts) > 0: | |
df = pd.concat(df_parts) | |
df.set_index('sha256', inplace=True) | |
metadata.update(df, overwrite=True) | |
for f in df_files: | |
shutil.move(os.path.join(opt.output_dir, f), os.path.join(opt.output_dir, 'merged_records', f'{timestamp}_{f}')) | |
# build metadata from files | |
if opt.from_file: | |
with ThreadPoolExecutor(max_workers=os.cpu_count()) as executor, \ | |
tqdm(total=len(metadata), desc="Building metadata") as pbar: | |
def worker(sha256): | |
try: | |
if need_process('rendered') and metadata.loc[sha256, 'rendered'] == False and \ | |
os.path.exists(os.path.join(opt.output_dir, 'renders', sha256, 'transforms.json')): | |
metadata.loc[sha256, 'rendered'] = True | |
if need_process('voxelized') and metadata.loc[sha256, 'rendered'] == True and metadata.loc[sha256, 'voxelized'] == False and \ | |
os.path.exists(os.path.join(opt.output_dir, 'voxels', f'{sha256}.ply')): | |
try: | |
pts = utils3d.io.read_ply(os.path.join(opt.output_dir, 'voxels', f'{sha256}.ply'))[0] | |
metadata.loc[sha256, 'voxelized'] = True | |
metadata.loc[sha256, 'num_voxels'] = len(pts) | |
except Exception as e: | |
pass | |
if need_process('cond_rendered') and metadata.loc[sha256, 'cond_rendered'] == False and \ | |
os.path.exists(os.path.join(opt.output_dir, 'renders_cond', sha256, 'transforms.json')): | |
metadata.loc[sha256, 'cond_rendered'] = True | |
for model in image_models: | |
if need_process(f'feature_{model}') and \ | |
metadata.loc[sha256, f'feature_{model}'] == False and \ | |
metadata.loc[sha256, 'rendered'] == True and \ | |
metadata.loc[sha256, 'voxelized'] == True and \ | |
os.path.exists(os.path.join(opt.output_dir, 'features', model, f'{sha256}.npz')): | |
metadata.loc[sha256, f'feature_{model}'] = True | |
for model in latent_models: | |
if need_process(f'latent_{model}') and \ | |
metadata.loc[sha256, f'latent_{model}'] == False and \ | |
metadata.loc[sha256, 'rendered'] == True and \ | |
metadata.loc[sha256, 'voxelized'] == True and \ | |
os.path.exists(os.path.join(opt.output_dir, 'latents', model, f'{sha256}.npz')): | |
metadata.loc[sha256, f'latent_{model}'] = True | |
for model in ss_latent_models: | |
if need_process(f'ss_latent_{model}') and \ | |
metadata.loc[sha256, f'ss_latent_{model}'] == False and \ | |
metadata.loc[sha256, 'voxelized'] == True and \ | |
os.path.exists(os.path.join(opt.output_dir, 'ss_latents', model, f'{sha256}.npz')): | |
metadata.loc[sha256, f'ss_latent_{model}'] = True | |
pbar.update() | |
except Exception as e: | |
print(f'Error processing {sha256}: {e}') | |
pbar.update() | |
executor.map(worker, metadata.index) | |
executor.shutdown(wait=True) | |
# statistics | |
metadata.to_csv(os.path.join(opt.output_dir, 'metadata.csv')) | |
num_downloaded = metadata['local_path'].count() if 'local_path' in metadata.columns else 0 | |
with open(os.path.join(opt.output_dir, 'statistics.txt'), 'w') as f: | |
f.write('Statistics:\n') | |
f.write(f' - Number of assets: {len(metadata)}\n') | |
f.write(f' - Number of assets downloaded: {num_downloaded}\n') | |
f.write(f' - Number of assets rendered: {metadata["rendered"].sum()}\n') | |
f.write(f' - Number of assets voxelized: {metadata["voxelized"].sum()}\n') | |
if len(image_models) != 0: | |
f.write(f' - Number of assets with image features extracted:\n') | |
for model in image_models: | |
f.write(f' - {model}: {metadata[f"feature_{model}"].sum()}\n') | |
if len(latent_models) != 0: | |
f.write(f' - Number of assets with latents extracted:\n') | |
for model in latent_models: | |
f.write(f' - {model}: {metadata[f"latent_{model}"].sum()}\n') | |
if len(ss_latent_models) != 0: | |
f.write(f' - Number of assets with sparse structure latents extracted:\n') | |
for model in ss_latent_models: | |
f.write(f' - {model}: {metadata[f"ss_latent_{model}"].sum()}\n') | |
f.write(f' - Number of assets with captions: {metadata["captions"].count()}\n') | |
f.write(f' - Number of assets with image conditions: {metadata["cond_rendered"].sum()}\n') | |
with open(os.path.join(opt.output_dir, 'statistics.txt'), 'r') as f: | |
print(f.read()) |