Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,843 Bytes
178f950 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import time
import torch
import vox2seq
if __name__ == "__main__":
stats = {
'z_order_cuda': [],
'z_order_pytorch': [],
'hilbert_cuda': [],
'hilbert_pytorch': [],
}
RES = [16, 32, 64, 128, 256]
for res in RES:
coords = torch.meshgrid(torch.arange(res), torch.arange(res), torch.arange(res))
coords = torch.stack(coords, dim=-1).reshape(-1, 3).int().cuda()
start = time.time()
for _ in range(100):
code_z_cuda = vox2seq.encode(coords, mode='z_order').cuda()
torch.cuda.synchronize()
stats['z_order_cuda'].append((time.time() - start) / 100)
start = time.time()
for _ in range(100):
code_z_pytorch = vox2seq.pytorch.encode(coords, mode='z_order').cuda()
torch.cuda.synchronize()
stats['z_order_pytorch'].append((time.time() - start) / 100)
start = time.time()
for _ in range(100):
code_h_cuda = vox2seq.encode(coords, mode='hilbert').cuda()
torch.cuda.synchronize()
stats['hilbert_cuda'].append((time.time() - start) / 100)
start = time.time()
for _ in range(100):
code_h_pytorch = vox2seq.pytorch.encode(coords, mode='hilbert').cuda()
torch.cuda.synchronize()
stats['hilbert_pytorch'].append((time.time() - start) / 100)
print(f"{'Resolution':<12}{'Z-Order (CUDA)':<24}{'Z-Order (PyTorch)':<24}{'Hilbert (CUDA)':<24}{'Hilbert (PyTorch)':<24}")
for res, z_order_cuda, z_order_pytorch, hilbert_cuda, hilbert_pytorch in zip(RES, stats['z_order_cuda'], stats['z_order_pytorch'], stats['hilbert_cuda'], stats['hilbert_pytorch']):
print(f"{res:<12}{z_order_cuda:<24.6f}{z_order_pytorch:<24.6f}{hilbert_cuda:<24.6f}{hilbert_pytorch:<24.6f}")
|