File size: 15,569 Bytes
62977bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c54fb1
62977bb
4c54fb1
62977bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""
This module provides Pyserini's Python search interface to Anserini. The main entry point is the ``LuceneImpactSearcher``
class, which wraps the Java class with the same name in Anserini.
"""

import logging
import os
import pickle
from tqdm import tqdm
from typing import Dict, List, Optional, Union
from collections import namedtuple

import numpy as np
import scipy

from pyserini.encode import QueryEncoder, TokFreqQueryEncoder, UniCoilQueryEncoder, \
    CachedDataQueryEncoder, SpladeQueryEncoder, SlimQueryEncoder
from pyserini.index import Document
from pyserini.pyclass import autoclass, JFloat, JArrayList, JHashMap
from pyserini.util import download_prebuilt_index, download_encoded_corpus

logger = logging.getLogger(__name__)

# Wrappers around Anserini classes
JImpactSearcher = autoclass('io.anserini.search.SimpleImpactSearcher')
JImpactSearcherResult = autoclass('io.anserini.search.SimpleImpactSearcher$Result')


class LuceneImpactSearcher:
    """Wrapper class for ``ImpactSearcher`` in Anserini.

    Parameters
    ----------
    index_dir : str
        Path to Lucene index directory.
    query_encoder: QueryEncoder or str
        QueryEncoder to encode query text
    """

    def __init__(self, index_dir: str, query_encoder: Union[QueryEncoder, str], min_idf=0, encoder_type: str='pytorch'):
        self.index_dir = index_dir
        self.idf = self._compute_idf(index_dir)
        self.min_idf = min_idf
        self.object = JImpactSearcher(index_dir)
        self.num_docs = self.object.get_total_num_docs()
        self.encoder_type = encoder_type
        self.query_encoder = query_encoder
        if encoder_type == 'onnx':
            if isinstance(query_encoder, str) or query_encoder is None:
                self.object.set_onnx_query_encoder(query_encoder)
            else:
                raise ValueError(f'Invalid query encoder type: {type(query_encoder)} for onnx encoder')
        elif encoder_type == 'pytorch':
            if isinstance(query_encoder, str) or query_encoder is None:
                self.query_encoder = self._init_query_encoder_from_str(query_encoder)
            else:
                self.query_encoder = query_encoder
        else:
            raise ValueError(f'Invalid encoder type: {encoder_type}')

    @classmethod
    def from_prebuilt_index(cls, prebuilt_index_name: str, query_encoder: Union[QueryEncoder, str], min_idf=0, encoder_type: str='pytorch'):
        """Build a searcher from a pre-built index; download the index if necessary.

        Parameters
        ----------
        prebuilt_index_name : str
            Prebuilt index name.
        query_encoder: QueryEncoder or str
            QueryEncoder to encode query text
        min_idf : int
            Minimum idf for query tokens
        encoder_type : str
            Encoder type, either 'pytorch' or 'onnx'

        Returns
        -------
        LuceneSearcher
            Searcher built from the prebuilt index.
        """
        print(f'Attempting to initialize pre-built index {prebuilt_index_name}.')
        try:
            index_dir = download_prebuilt_index(prebuilt_index_name)
        except ValueError as e:
            print(str(e))
            return None

        print(f'Initializing {prebuilt_index_name}...')
        return cls(index_dir, query_encoder, min_idf, encoder_type)

    def encode(self, query):
        if self.encoder_type == 'onnx':
            encoded_query = self.object.encode_with_onnx(query)
        else:
            encoded_query = self.query_encoder.encode(query)
        return encoded_query

    @staticmethod
    def list_prebuilt_indexes():
        """Display information about available prebuilt indexes."""
        print("Not Implemented")

    def search(self, q: str, k: int = 10, fields=dict()) -> List[JImpactSearcherResult]:
        """Search the collection.

        Parameters
        ----------
        q : str
            Query string.
        k : int
            Number of hits to return.
        min_idf : int
            Minimum idf for query tokens
        fields : dict
            Optional map of fields to search with associated boosts.

        Returns
        -------
        List[JImpactSearcherResult]
            List of search results.
        """

        jfields = JHashMap()
        for (field, boost) in fields.items():
            jfields.put(field, JFloat(boost))

        encoded_query = self.encode(q)

        jquery = encoded_query
        if self.encoder_type == 'pytorch':
            jquery = JHashMap()
            for (token, weight) in encoded_query.items():
                if token in self.idf and self.idf[token] > self.min_idf:
                    jquery.put(token, JFloat(weight))

        if not fields:
            hits = self.object.search(jquery, k)
        else:
            hits = self.object.searchFields(jquery, jfields, k)

        return hits

    def batch_search(self, queries: List[str], qids: List[str],
                     k: int = 10, threads: int = 1, fields=dict()) -> Dict[str, List[JImpactSearcherResult]]:
        """Search the collection concurrently for multiple queries, using multiple threads.

        Parameters
        ----------
        queries : List[str]
            List of query string.
        qids : List[str]
            List of corresponding query ids.
        k : int
            Number of hits to return.
        threads : int
            Maximum number of threads to use.
        min_idf : int
            Minimum idf for query tokens
        fields : dict
            Optional map of fields to search with associated boosts.

        Returns
        -------
        Dict[str, List[JImpactSearcherResult]]
            Dictionary holding the search results, with the query ids as keys and the corresponding lists of search
            results as the values.
        """
        query_lst = JArrayList()
        qid_lst = JArrayList()
        for q in queries:
            encoded_query = self.encode(q)
            jquery = JHashMap()
            if self.encoder_type == 'pytorch':
                for (token, weight) in encoded_query.items():
                    if token in self.idf and self.idf[token] > self.min_idf:
                        jquery.put(token, JFloat(weight))
            else:
                jquery = encoded_query
            query_lst.add(jquery)

        for qid in qids:
            jqid = qid
            qid_lst.add(jqid)

        jfields = JHashMap()
        for (field, boost) in fields.items():
            jfields.put(field, JFloat(boost))

        if not fields:
            results = self.object.batch_search(query_lst, qid_lst, int(k), int(threads))
        else:
            results = self.object.batch_search_fields(query_lst, qid_lst, int(k), int(threads), jfields)
        return {r.getKey(): r.getValue() for r in results.entrySet().toArray()}

    def doc(self, docid: Union[str, int]) -> Optional[Document]:
        """Return the :class:`Document` corresponding to ``docid``. The ``docid`` is overloaded: if it is of type
        ``str``, it is treated as an external collection ``docid``; if it is of type ``int``, it is treated as an
        internal Lucene ``docid``. Method returns ``None`` if the ``docid`` does not exist in the index.

        Parameters
        ----------
        docid : Union[str, int]
            Overloaded ``docid``: either an external collection ``docid`` (``str``) or an internal Lucene ``docid``
            (``int``).

        Returns
        -------
        Document
            :class:`Document` corresponding to the ``docid``.
        """
        lucene_document = self.object.document(docid)
        if lucene_document is None:
            return None
        return Document(lucene_document)

    def doc_by_field(self, field: str, q: str) -> Optional[Document]:
        """Return the :class:`Document` based on a ``field`` with ``id``. For example, this method can be used to fetch
        document based on alternative primary keys that have been indexed, such as an article's DOI. Method returns
        ``None`` if no such document exists.

        Parameters
        ----------
        field : str
            Field to look up.
        q : str
            Unique id of document.

        Returns
        -------
        Document
            :class:`Document` whose ``field`` is ``id``.
        """
        lucene_document = self.object.documentByField(field, q)
        if lucene_document is None:
            return None
        return Document(lucene_document)

    def close(self):
        """Close the searcher."""
        self.object.close()

    @staticmethod
    def _init_query_encoder_from_str(query_encoder):
        if query_encoder is None:
            return TokFreqQueryEncoder()
        elif os.path.isfile(query_encoder) and (query_encoder.endswith('jsonl') or query_encoder.encode('json')):
            return CachedDataQueryEncoder(query_encoder)
        elif 'unicoil' in query_encoder.lower():
            return UniCoilQueryEncoder(query_encoder)
        elif 'splade' in query_encoder.lower():
            return SpladeQueryEncoder(query_encoder)
        elif 'slim' in query_encoder.lower():
            return SlimQueryEncoder(query_encoder)

    @staticmethod
    def _compute_idf(index_path):
        from pyserini.index.lucene import IndexReader
        index_reader = IndexReader(index_path)
        tokens = []
        dfs = []
        for term in index_reader.terms():
            dfs.append(term.df)
            tokens.append(term.term)
        idfs = np.log((index_reader.stats()['documents'] / (np.array(dfs))))
        return dict(zip(tokens, idfs))


SlimResult = namedtuple("SlimResult", "docid score")

def maxsim(entry):
    q_embed, d_embeds, d_lens, qid, scores, docids = entry
    if len(d_embeds) == 0:
        return qid, scores, docids
    d_embeds = scipy.sparse.vstack(d_embeds).transpose() # (LD x 1000) x D
    max_scores = (q_embed@d_embeds).todense() # LQ x (LD x 1000)
    scores = []
    start = 0
    for d_len in d_lens:
        scores.append(max_scores[:, start:start+d_len].max(1).sum())
        start += d_len
    scores, docids = list(zip(*sorted(list(zip(scores, docids)), key=lambda x: -x[0])))
    return qid, scores, docids

class SlimSearcher(LuceneImpactSearcher):
    def __init__(self, encoded_corpus, *args, **kwargs):
        super().__init__(*args, **kwargs)
        print("Loading sparse corpus vectors for fast reranking...")
        with open(os.path.join(encoded_corpus, "sparse_range.pkl"), "rb") as f:
            self.sparse_ranges = pickle.load(f)
        sparse_vecs = scipy.sparse.load_npz(os.path.join(encoded_corpus, "sparse_vec.npz"))
        self.sparse_vecs = [sparse_vecs[start:end] for start, end in tqdm(self.sparse_ranges)]
    
    @classmethod
    def from_prebuilt_index(cls, encoded_corpus:str, prebuilt_index_name: str, query_encoder: Union[QueryEncoder, str], min_idf=0):
        print(f'Attempting to initialize pre-built index {prebuilt_index_name}.')
        try:
            index_dir = download_prebuilt_index(prebuilt_index_name)
            encoded_corpus = download_encoded_corpus(encoded_corpus)
        except ValueError as e:
            print(str(e))
            return None

        print(f'Initializing {prebuilt_index_name}...')
        return cls(encoded_corpus, index_dir, query_encoder, min_idf)

    def search(self, q: str, k: int = 10, fields=dict()) -> List[JImpactSearcherResult]:
        jfields = JHashMap()
        for (field, boost) in fields.items():
            jfields.put(field, JFloat(boost))

        fusion_encoded_query, sparse_encoded_query = self.query_encoder.encode(q, return_sparse=True)
        jquery = JHashMap()
        for (token, weight) in fusion_encoded_query.items():
            if token in self.idf and self.idf[token] > self.min_idf:
                jquery.put(token, JFloat(weight))

        if self.sparse_vecs is not None:
            search_k = k * (self.min_idf + 1)
        if not fields:
            hits = self.object.search(jquery, search_k)
        else:
            hits = self.object.searchFields(jquery, jfields, search_k)
        hits = self.fast_rerank([sparse_encoded_query], {0: hits}, k)[0]
        return hits
    
    def batch_search(self, queries: List[str], qids: List[str],
                     k: int = 10, threads: int = 1, fields=dict()) -> Dict[str, List[JImpactSearcherResult]]:
        query_lst = JArrayList()
        qid_lst = JArrayList()
        sparse_encoded_queries = {}
        for qid, q in zip(qids, queries):
            fusion_encoded_query, sparse_encoded_query = self.query_encoder.encode(q, return_sparse=True)
            jquery = JHashMap()
            for (token, weight) in fusion_encoded_query.items():
                if token in self.idf and self.idf[token] > self.min_idf:
                    jquery.put(token, JFloat(weight))
            query_lst.add(jquery)
            sparse_encoded_queries[qid] = sparse_encoded_query

        for qid in qids:
            jqid = qid
            qid_lst.add(jqid)

        jfields = JHashMap()
        for (field, boost) in fields.items():
            jfields.put(field, JFloat(boost))
        
        if not fields:
            results = self.object.batch_search(query_lst, qid_lst, k * (self.min_idf + 1), threads)
        else:
            results = self.object.batch_search_fields(query_lst, qid_lst, k * (self.min_idf + 1), threads, jfields)
        
        results = {r.getKey(): r.getValue() for r in results.entrySet().toArray()}
        results = self.fast_rerank(sparse_encoded_queries, results, k)
        return results

    def fast_rerank(self, q_embeds, results, k):
        all_scores = []
        all_docids = []
        all_q_embeds = []
        all_d_embeds = []
        all_d_lens = []
        qids = []
        for qid in results.keys():
            all_q_embeds.append(q_embeds[qid])
            qids.append(qid)
            hits = results[qid]
            docids = []
            scores = []
            d_embeds = []
            d_lens = []
            for hit in hits:
                docids.append(hit.docid)
                scores.append(hit.score)
                start, end = self.sparse_ranges[int(hit.docid)]
                d_embeds.append(self.sparse_vecs[int(hit.docid)])
                d_lens.append(end-start)
            all_scores.append(scores)
            all_docids.append(docids)
            all_d_embeds.append(d_embeds)
            all_d_lens.append(d_lens)

        entries = list(zip(all_q_embeds, all_d_embeds, all_d_lens, qids, all_scores, all_docids))
        results = [maxsim(entry) for entry in entries]
        anserini_results = {}
        for qid, scores, docids in results:
            hits = []
            for score, docid in list(zip(scores, docids))[:k]:
                hits.append(SlimResult(docid, score))
            anserini_results[qid] = hits
        return anserini_results