File size: 18,084 Bytes
62977bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import os
from tqdm import tqdm
from transformers import AutoTokenizer
from pyserini.analysis import JDefaultEnglishAnalyzer, JWhiteSpaceAnalyzer
from pyserini.output_writer import OutputFormat, get_output_writer
from pyserini.pyclass import autoclass
from pyserini.query_iterator import get_query_iterator, TopicsFormat
from pyserini.search import JDisjunctionMaxQueryGenerator
from . import LuceneImpactSearcher, LuceneSearcher, SlimSearcher
from .reranker import ClassifierType, PseudoRelevanceClassifierReranker
def set_bm25_parameters(searcher, index, k1=None, b=None):
if k1 is not None or b is not None:
if k1 is None or b is None:
print('Must set *both* k1 and b for BM25!')
exit()
print(f'Setting BM25 parameters: k1={k1}, b={b}')
searcher.set_bm25(k1, b)
else:
# Automatically set bm25 parameters based on known index...
if index == 'msmarco-passage' or index == 'msmarco-passage-slim' or index == 'msmarco-v1-passage' or \
index == 'msmarco-v1-passage-slim' or index == 'msmarco-v1-passage-full':
# See https://github.com/castorini/anserini/blob/master/docs/regressions-msmarco-passage.md
print('MS MARCO passage: setting k1=0.82, b=0.68')
searcher.set_bm25(0.82, 0.68)
elif index == 'msmarco-passage-expanded' or \
index == 'msmarco-v1-passage-d2q-t5' or \
index == 'msmarco-v1-passage-d2q-t5-docvectors':
# See https://github.com/castorini/anserini/blob/master/docs/regressions-msmarco-passage-docTTTTTquery.md
print('MS MARCO passage w/ doc2query-T5 expansion: setting k1=2.18, b=0.86')
searcher.set_bm25(2.18, 0.86)
elif index == 'msmarco-doc' or index == 'msmarco-doc-slim' or index == 'msmarco-v1-doc' or \
index == 'msmarco-v1-doc-slim' or index == 'msmarco-v1-doc-full':
# See https://github.com/castorini/anserini/blob/master/docs/regressions-msmarco-doc.md
print('MS MARCO doc: setting k1=4.46, b=0.82')
searcher.set_bm25(4.46, 0.82)
elif index == 'msmarco-doc-per-passage' or index == 'msmarco-doc-per-passage-slim' or \
index == 'msmarco-v1-doc-segmented' or index == 'msmarco-v1-doc-segmented-slim' or \
index == 'msmarco-v1-doc-segmented-full':
# See https://github.com/castorini/anserini/blob/master/docs/regressions-msmarco-doc-segmented.md
print('MS MARCO doc, per passage: setting k1=2.16, b=0.61')
searcher.set_bm25(2.16, 0.61)
elif index == 'msmarco-doc-expanded-per-doc' or \
index == 'msmarco-v1-doc-d2q-t5' or \
index == 'msmarco-v1-doc-d2q-t5-docvectors':
# See https://github.com/castorini/anserini/blob/master/docs/regressions-msmarco-doc-docTTTTTquery.md
print('MS MARCO doc w/ doc2query-T5 (per doc) expansion: setting k1=4.68, b=0.87')
searcher.set_bm25(4.68, 0.87)
elif index == 'msmarco-doc-expanded-per-passage' or \
index == 'msmarco-v1-doc-segmented-d2q-t5' or \
index == 'msmarco-v1-doc-segmented-d2q-t5-docvectors':
# See https://github.com/castorini/anserini/blob/master/docs/regressions-msmarco-doc-segmented-docTTTTTquery.md
print('MS MARCO doc w/ doc2query-T5 (per passage) expansion: setting k1=2.56, b=0.59')
searcher.set_bm25(2.56, 0.59)
def define_search_args(parser):
parser.add_argument('--index', type=str, metavar='path to index or index name', required=True,
help="Path to Lucene index or name of prebuilt index.")
parser.add_argument('--encoded-corpus', type=str, default=None, help="path to stored sparse vectors")
parser.add_argument('--impact', action='store_true', help="Use Impact.")
parser.add_argument('--encoder', type=str, default=None, help="encoder name")
parser.add_argument('--onnx-encoder', type=str, default=None, help="onnx encoder name")
parser.add_argument('--min-idf', type=int, default=0, help="minimum idf")
parser.add_argument('--bm25', action='store_true', default=True, help="Use BM25 (default).")
parser.add_argument('--k1', type=float, help='BM25 k1 parameter.')
parser.add_argument('--b', type=float, help='BM25 b parameter.')
parser.add_argument('--rm3', action='store_true', help="Use RM3")
parser.add_argument('--rocchio', action='store_true', help="Use Rocchio")
parser.add_argument('--rocchio-use-negative', action='store_true', help="Use nonrelevant labels in Rocchio")
parser.add_argument('--qld', action='store_true', help="Use QLD")
parser.add_argument('--language', type=str, help='language code for BM25, e.g. zh for Chinese', default='en')
parser.add_argument('--pretokenized', action='store_true', help="Boolean switch to accept pre-tokenized topics")
parser.add_argument('--prcl', type=ClassifierType, nargs='+', default=[],
help='Specify the classifier PseudoRelevanceClassifierReranker uses.')
parser.add_argument('--prcl.vectorizer', dest='vectorizer', type=str,
help='Type of vectorizer. Available: TfidfVectorizer, BM25Vectorizer.')
parser.add_argument('--prcl.r', dest='r', type=int, default=10,
help='Number of positive labels in pseudo relevance feedback.')
parser.add_argument('--prcl.n', dest='n', type=int, default=100,
help='Number of negative labels in pseudo relevance feedback.')
parser.add_argument('--prcl.alpha', dest='alpha', type=float, default=0.5,
help='Alpha value for interpolation in pseudo relevance feedback.')
parser.add_argument('--fields', metavar="key=value", nargs='+',
help='Fields to search with assigned float weights.')
parser.add_argument('--dismax', action='store_true', default=False,
help='Use disjunction max queries when searching multiple fields.')
parser.add_argument('--dismax.tiebreaker', dest='tiebreaker', type=float, default=0.0,
help='The tiebreaker weight to use in disjunction max queries.')
parser.add_argument('--stopwords', type=str, help='Path to file with customstopwords.')
if __name__ == "__main__":
JLuceneSearcher = autoclass('io.anserini.search.SimpleSearcher')
parser = argparse.ArgumentParser(description='Search a Lucene index.')
define_search_args(parser)
parser.add_argument('--topics', type=str, metavar='topic_name', required=True,
help="Name of topics. Available: robust04, robust05, core17, core18.")
parser.add_argument('--hits', type=int, metavar='num',
required=False, default=1000, help="Number of hits.")
parser.add_argument('--topics-format', type=str, metavar='format', default=TopicsFormat.DEFAULT.value,
help=f"Format of topics. Available: {[x.value for x in list(TopicsFormat)]}")
parser.add_argument('--output-format', type=str, metavar='format', default=OutputFormat.TREC.value,
help=f"Format of output. Available: {[x.value for x in list(OutputFormat)]}")
parser.add_argument('--output', type=str, metavar='path',
help="Path to output file.")
parser.add_argument('--max-passage', action='store_true',
default=False, help="Select only max passage from document.")
parser.add_argument('--max-passage-hits', type=int, metavar='num', required=False, default=100,
help="Final number of hits when selecting only max passage.")
parser.add_argument('--max-passage-delimiter', type=str, metavar='str', required=False, default='#',
help="Delimiter between docid and passage id.")
parser.add_argument('--batch-size', type=int, metavar='num', required=False,
default=1, help="Specify batch size to search the collection concurrently.")
parser.add_argument('--threads', type=int, metavar='num', required=False,
default=1, help="Maximum number of threads to use.")
parser.add_argument('--tokenizer', type=str, help='tokenizer used to preprocess topics')
parser.add_argument('--remove-duplicates', action='store_true', default=False, help="Remove duplicate docs.")
# For some test collections, a query is doc from the corpus (e.g., arguana in BEIR).
# We want to remove the query from the results. This is equivalent to -removeQuery in Java.
parser.add_argument('--remove-query', action='store_true', default=False, help="Remove query from results list.")
args = parser.parse_args()
query_iterator = get_query_iterator(args.topics, TopicsFormat(args.topics_format))
topics = query_iterator.topics
if not args.impact:
if os.path.exists(args.index):
# create searcher from index directory
searcher = LuceneSearcher(args.index)
else:
# create searcher from prebuilt index name
searcher = LuceneSearcher.from_prebuilt_index(args.index)
elif args.impact:
if args.encoder and args.onnx_encoder:
raise ValueError("Cannot specify both --encoder and --onnx-encoder")
if args.encoder:
if os.path.exists(args.index):
if args.encoded_corpus is not None:
searcher = SlimSearcher(args.encoded_corpus, args.index, args.encoder, args.min_idf)
else:
searcher = LuceneImpactSearcher(args.index, args.encoder, args.min_idf)
else:
if args.encoded_corpus is not None:
searcher = SlimSearcher.from_prebuilt_index(args.encoded_corpus, args.index, args.encoder, args.min_idf)
else:
searcher = LuceneImpactSearcher.from_prebuilt_index(args.index, args.encoder, args.min_idf)
elif args.onnx_encoder:
if os.path.exists(args.index):
if args.encoded_corpus is not None:
searcher = SlimSearcher(args.encoded_corpus, args.index, args.onnx_encoder, args.min_idf)
else:
searcher = LuceneImpactSearcher(args.index, args.onnx_encoder, args.min_idf, 'onnx')
else:
if args.encoded_corpus is not None:
searcher = SlimSearcher.from_prebuilt_index(args.encoded_corpus, args.index, args.onnx_encoder, args.min_idf)
else:
searcher = LuceneImpactSearcher.from_prebuilt_index(args.index, args.onnx_encoder, args.min_idf, 'onnx')
# These are the cases where we're specifying pre-encoded queries
elif os.path.exists(args.index):
searcher = LuceneImpactSearcher(args.index, args.encoder, args.min_idf)
else:
searcher = LuceneImpactSearcher.from_prebuilt_index(args.index, args.encoder, args.min_idf)
if args.language != 'en':
searcher.set_language(args.language)
if not searcher:
exit()
search_rankers = []
if args.qld:
search_rankers.append('qld')
searcher.set_qld()
elif args.bm25:
search_rankers.append('bm25')
set_bm25_parameters(searcher, args.index, args.k1, args.b)
if args.rm3:
search_rankers.append('rm3')
searcher.set_rm3()
if args.rocchio:
search_rankers.append('rocchio')
if args.rocchio_use_negative:
searcher.set_rocchio(gamma=0.15, use_negative=True)
else:
searcher.set_rocchio()
fields = dict()
if args.fields:
fields = dict([pair.split('=') for pair in args.fields])
print(f'Searching over fields: {fields}')
query_generator = None
if args.dismax:
query_generator = JDisjunctionMaxQueryGenerator(args.tiebreaker)
print(f'Using dismax query generator with tiebreaker={args.tiebreaker}')
if args.pretokenized:
analyzer = JWhiteSpaceAnalyzer()
searcher.set_analyzer(analyzer)
if args.tokenizer is not None:
raise ValueError(f"--tokenizer is not supported with when setting --pretokenized.")
if args.tokenizer != None:
analyzer = JWhiteSpaceAnalyzer()
searcher.set_analyzer(analyzer)
print(f'Using whitespace analyzer because of pretokenized topics')
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
print(f'Using {args.tokenizer} to preprocess topics')
if args.stopwords:
analyzer = JDefaultEnglishAnalyzer.fromArguments('porter', False, args.stopwords)
searcher.set_analyzer(analyzer)
print(f'Using custom stopwords={args.stopwords}')
# get re-ranker
use_prcl = args.prcl and len(args.prcl) > 0 and args.alpha > 0
if use_prcl is True:
ranker = PseudoRelevanceClassifierReranker(
searcher.index_dir, args.vectorizer, args.prcl, r=args.r, n=args.n, alpha=args.alpha)
# build output path
output_path = args.output
if output_path is None:
if use_prcl is True:
clf_rankers = []
for t in args.prcl:
if t == ClassifierType.LR:
clf_rankers.append('lr')
elif t == ClassifierType.SVM:
clf_rankers.append('svm')
r_str = f'prcl.r_{args.r}'
n_str = f'prcl.n_{args.n}'
a_str = f'prcl.alpha_{args.alpha}'
clf_str = 'prcl_' + '+'.join(clf_rankers)
tokens1 = ['run', args.topics, '+'.join(search_rankers)]
tokens2 = [args.vectorizer, clf_str, r_str, n_str, a_str]
output_path = '.'.join(tokens1) + '-' + '-'.join(tokens2) + ".txt"
else:
tokens = ['run', args.topics, '+'.join(search_rankers), 'txt']
output_path = '.'.join(tokens)
print(f'Running {args.topics} topics, saving to {output_path}...')
tag = output_path[:-4] if args.output is None else 'Anserini'
output_writer = get_output_writer(output_path, OutputFormat(args.output_format), 'w',
max_hits=args.hits, tag=tag, topics=topics,
use_max_passage=args.max_passage,
max_passage_delimiter=args.max_passage_delimiter,
max_passage_hits=args.max_passage_hits)
with output_writer:
batch_topics = list()
batch_topic_ids = list()
for index, (topic_id, text) in enumerate(tqdm(query_iterator, total=len(topics.keys()))):
if (args.tokenizer != None):
toks = tokenizer.tokenize(text)
text = ' '
text = text.join(toks)
if args.batch_size <= 1 and args.threads <= 1:
if args.impact:
hits = searcher.search(text, args.hits, fields=fields)
else:
hits = searcher.search(text, args.hits, query_generator=query_generator, fields=fields)
results = [(topic_id, hits)]
else:
batch_topic_ids.append(str(topic_id))
batch_topics.append(text)
if (index + 1) % args.batch_size == 0 or \
index == len(topics.keys()) - 1:
if args.impact:
results = searcher.batch_search(
batch_topics, batch_topic_ids, args.hits, args.threads, fields=fields
)
else:
results = searcher.batch_search(
batch_topics, batch_topic_ids, args.hits, args.threads,
query_generator=query_generator, fields=fields
)
results = [(id_, results[id_]) for id_ in batch_topic_ids]
batch_topic_ids.clear()
batch_topics.clear()
else:
continue
for topic, hits in results:
# do rerank
if use_prcl and len(hits) > (args.r + args.n):
docids = [hit.docid.strip() for hit in hits]
scores = [hit.score for hit in hits]
scores, docids = ranker.rerank(docids, scores)
docid_score_map = dict(zip(docids, scores))
for hit in hits:
hit.score = docid_score_map[hit.docid.strip()]
if args.remove_duplicates:
seen_docids = set()
dedup_hits = []
for hit in hits:
if hit.docid.strip() in seen_docids:
continue
seen_docids.add(hit.docid.strip())
dedup_hits.append(hit)
hits = dedup_hits
# For some test collections, a query is doc from the corpus (e.g., arguana in BEIR).
# We want to remove the query from the results.
if args.remove_query:
hits = [hit for hit in hits if hit.docid != topic]
# write results
output_writer.write(topic, hits)
results.clear()
|