carlosabadia commited on
Commit
a7ad35c
·
1 Parent(s): 09541b6
Files changed (3) hide show
  1. README.md +2 -2
  2. app.py +1 -1
  3. model.py +3 -2
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
- title: WorldPuzzleSolver
3
- emoji: 📊
4
  colorFrom: yellow
5
  colorTo: purple
6
  sdk: gradio
 
1
  ---
2
+ title: World Puzzle Solver
3
+ emoji: 🧩
4
  colorFrom: yellow
5
  colorTo: purple
6
  sdk: gradio
app.py CHANGED
@@ -58,7 +58,7 @@ def predict(img) -> Tuple[Dict, float]:
58
  ### 4. Gradio app ###
59
 
60
  # Create title, description and article strings
61
- title = "World Puzzle Solver"
62
  description = "A World Puzzle Solver app that uses a PyTorch model to predict the letters in a target image."
63
  article = ""
64
 
 
58
  ### 4. Gradio app ###
59
 
60
  # Create title, description and article strings
61
+ title = "World Puzzle Solver 🧩"
62
  description = "A World Puzzle Solver app that uses a PyTorch model to predict the letters in a target image."
63
  article = ""
64
 
model.py CHANGED
@@ -1,6 +1,7 @@
1
  import torch
2
  import torchvision
3
  from torch import nn
 
4
 
5
 
6
  def create_model(num_classes: int = 32,
@@ -17,7 +18,7 @@ def create_model(num_classes: int = 32,
17
  transforms (torchvision.transforms): vit image transforms.
18
  """
19
  IMG_SIZE = 28
20
- transforms = transforms.Compose([
21
  transforms.Resize((IMG_SIZE, IMG_SIZE)),
22
  transforms.Grayscale(num_output_channels=1),
23
  transforms.ToTensor()])
@@ -64,4 +65,4 @@ def create_model(num_classes: int = 32,
64
  # print(x.shape)
65
  x = self.classifier(self.block_2(self.block_1(x)))
66
  return x
67
- return Model, transforms
 
1
  import torch
2
  import torchvision
3
  from torch import nn
4
+ from torchvision import transforms
5
 
6
 
7
  def create_model(num_classes: int = 32,
 
18
  transforms (torchvision.transforms): vit image transforms.
19
  """
20
  IMG_SIZE = 28
21
+ model_transforms = transforms.Compose([
22
  transforms.Resize((IMG_SIZE, IMG_SIZE)),
23
  transforms.Grayscale(num_output_channels=1),
24
  transforms.ToTensor()])
 
65
  # print(x.shape)
66
  x = self.classifier(self.block_2(self.block_1(x)))
67
  return x
68
+ return Model, model_transforms