Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
6 |
# You may obtain a copy of the License at
|
@@ -12,11 +14,12 @@
|
|
12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
-
|
|
|
16 |
import spaces
|
17 |
import gradio as gr
|
18 |
from PIL import Image
|
19 |
-
from pydub import AudioSegment
|
20 |
#from scipy.io import wavfile
|
21 |
|
22 |
import os
|
@@ -24,6 +27,8 @@ import re
|
|
24 |
import time
|
25 |
import warnings
|
26 |
#import datetime
|
|
|
|
|
27 |
import subprocess
|
28 |
from pathlib import Path
|
29 |
import tempfile
|
@@ -31,8 +36,7 @@ from fpdf import FPDF
|
|
31 |
|
32 |
import psutil
|
33 |
from gpuinfo import GPUInfo
|
34 |
-
|
35 |
-
#import csv
|
36 |
import numpy as np
|
37 |
import torch
|
38 |
import torchaudio
|
@@ -58,38 +62,28 @@ SIDEBAR_INFO = f"""
|
|
58 |
</div>
|
59 |
"""
|
60 |
|
61 |
-
#
|
62 |
-
|
63 |
|
64 |
pipe = pipeline("automatic-speech-recognition", model="NbAiLab/nb-whisper-large", chunk_length_s=30, generate_kwargs={'task': 'transcribe', 'language': 'no'})
|
65 |
|
66 |
@spaces.GPU()
|
67 |
-
def
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
# --convert to mono
|
80 |
-
if waveform.ndim > 1:
|
81 |
-
waveform = waveform[0, :]
|
82 |
-
# Convert tensor@ndarray
|
83 |
-
waveform = waveform.numpy()
|
84 |
|
85 |
start_time = time.time()
|
86 |
-
|
87 |
-
# --pipe it
|
88 |
-
with torch.no_grad():
|
89 |
-
outputs = pipe(waveform, sampling_rate=sample_rate, batch_size=batch_size, return_timestamps=False)
|
90 |
|
91 |
end_time = time.time()
|
92 |
-
|
93 |
output_time = end_time - start_time
|
94 |
word_count = len(text.split())
|
95 |
|
@@ -111,49 +105,58 @@ def transcribe_audio(audio, batch_size=16):
|
|
111 |
*CPU Usage: {cpu_usage}%*
|
112 |
"""
|
113 |
|
114 |
-
return text.strip(), system_info
|
|
|
115 |
|
116 |
|
117 |
-
# ------------summaries section------------
|
118 |
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
@spaces.GPU()
|
122 |
-
# --btw, who is doing this...?
|
123 |
def clean_text(text):
|
124 |
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
|
125 |
text = re.sub(r'[^\w\s]', '', text)
|
126 |
text = re.sub(r'\s+', ' ', text).strip()
|
127 |
return text
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
nlp.add_pipe('sentencizer')
|
132 |
-
spacy_stop_words = spacy.lang.nb.stop_words.STOP_WORDS
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
137 |
|
138 |
-
# --process text with SpaCy
|
139 |
-
@spaces.GPU()
|
140 |
-
def preprocess_text(text):
|
141 |
-
doc = nlp(text)
|
142 |
stop_words = spacy_stop_words
|
143 |
words = [token.text for token in doc if token.text.lower() not in stop_words]
|
144 |
return ' '.join(words)
|
145 |
|
146 |
-
# --model is called to summarize (need to be placed *after* the three styles and call them)
|
147 |
@spaces.GPU()
|
148 |
-
def summarize_text(text):
|
|
|
|
|
|
|
149 |
preprocessed_text = preprocess_text(text)
|
150 |
inputs = summarization_tokenizer(preprocessed_text, max_length=1024, return_tensors="pt", truncation=True)
|
151 |
inputs = inputs.to(device)
|
152 |
summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True)
|
153 |
return summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
154 |
-
|
155 |
@spaces.GPU()
|
156 |
-
def build_similarity_matrix(sentences
|
157 |
similarity_matrix = nx.Graph()
|
158 |
for i, tokens_a in enumerate(sentences):
|
159 |
for j, tokens_b in enumerate(sentences):
|
@@ -161,33 +164,38 @@ def build_similarity_matrix(sentences, stop_words):
|
|
161 |
common_words = set(tokens_a) & set(tokens_b)
|
162 |
similarity_matrix.add_edge(i, j, weight=len(common_words))
|
163 |
return similarity_matrix
|
164 |
-
# [------------model needs to be called for these------------]
|
165 |
|
166 |
-
|
167 |
-
# --PageRank
|
168 |
@spaces.GPU()
|
169 |
-
def graph_based_summary(text, num_paragraphs=3):
|
170 |
-
|
|
|
|
|
171 |
sentences = [sent.text for sent in doc.sents]
|
172 |
if len(sentences) < num_paragraphs:
|
173 |
-
return ' '.join(sentences)
|
174 |
|
175 |
sentence_tokens = [nlp(sent) for sent in sentences]
|
176 |
stop_words = spacy_stop_words
|
177 |
filtered_tokens = [[token.text for token in tokens if token.text.lower() not in stop_words] for tokens in sentence_tokens]
|
178 |
-
similarity_matrix = build_similarity_matrix(filtered_tokens
|
179 |
|
180 |
scores = nx.pagerank(similarity_matrix)
|
181 |
ranked_sentences = sorted(((scores[i], sent) for i, sent in enumerate(sentences)), reverse=True)
|
182 |
return ' '.join([sent for _, sent in ranked_sentences[:num_paragraphs]])
|
183 |
|
184 |
-
# --LexRank
|
185 |
@spaces.GPU()
|
186 |
-
def lex_rank_summary(text, num_paragraphs=3, threshold=0.1):
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
sentences = [sent.text for sent in doc.sents]
|
189 |
if len(sentences) < num_paragraphs:
|
190 |
-
return ' '.join(sentences)
|
191 |
|
192 |
stop_words = spacy_stop_words
|
193 |
vectorizer = TfidfVectorizer(stop_words=list(stop_words))
|
@@ -201,13 +209,18 @@ def lex_rank_summary(text, num_paragraphs=3, threshold=0.1):
|
|
201 |
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
|
202 |
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
|
203 |
|
204 |
-
# --TextRank
|
205 |
@spaces.GPU()
|
206 |
-
def text_rank_summary(text, num_paragraphs=3):
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
sentences = [sent.text for sent in doc.sents]
|
209 |
if len(sentences) < num_paragraphs:
|
210 |
-
return ' '.join(sentences)
|
211 |
|
212 |
stop_words = spacy_stop_words
|
213 |
vectorizer = TfidfVectorizer(stop_words=list(stop_words))
|
@@ -219,21 +232,111 @@ def text_rank_summary(text, num_paragraphs=3):
|
|
219 |
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
|
220 |
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
|
221 |
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
iface = gr.Blocks()
|
|
|
227 |
with iface:
|
|
|
228 |
gr.HTML(SIDEBAR_INFO)
|
229 |
gr.Markdown(HEADER_INFO)
|
230 |
-
|
231 |
-
audio_input = gr.Audio(label="Upload Audio File")
|
232 |
-
transcribed_text = gr.Textbox(label="Transcribed Text")
|
233 |
-
system_info = gr.Textbox(label="System Info")
|
234 |
-
|
235 |
-
transcribe_button = gr.Button("Transcribe")
|
236 |
-
transcribe_button.click(fn=transcribe_audio, inputs=audio_input, outputs=[transcribed_text, system_info])
|
237 |
-
|
238 |
-
iface.launch(share=True, debug=True)
|
239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### -----------------------------------------------------------------------
|
2 |
+
### (FULL, Revised) version_1.07ALPHA_app.py
|
3 |
+
### -----------------------------------------------------------------------
|
4 |
+
|
5 |
+
# -------------------------------------------------------------------------
|
6 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
# you may not use this file except in compliance with the License.
|
8 |
# You may obtain a copy of the License at
|
|
|
14 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
# See the License for the specific language governing permissions and
|
16 |
# limitations under the License.
|
17 |
+
# -------------------------------------------------------------------------
|
18 |
+
|
19 |
import spaces
|
20 |
import gradio as gr
|
21 |
from PIL import Image
|
22 |
+
#from pydub import AudioSegment
|
23 |
#from scipy.io import wavfile
|
24 |
|
25 |
import os
|
|
|
27 |
import time
|
28 |
import warnings
|
29 |
#import datetime
|
30 |
+
#import pandas as pd
|
31 |
+
#import csv
|
32 |
import subprocess
|
33 |
from pathlib import Path
|
34 |
import tempfile
|
|
|
36 |
|
37 |
import psutil
|
38 |
from gpuinfo import GPUInfo
|
39 |
+
|
|
|
40 |
import numpy as np
|
41 |
import torch
|
42 |
import torchaudio
|
|
|
62 |
</div>
|
63 |
"""
|
64 |
|
65 |
+
# ------------transcribe section------------
|
|
|
66 |
|
67 |
pipe = pipeline("automatic-speech-recognition", model="NbAiLab/nb-whisper-large", chunk_length_s=30, generate_kwargs={'task': 'transcribe', 'language': 'no'})
|
68 |
|
69 |
@spaces.GPU()
|
70 |
+
def transcribe(microphone, file_upload, batch_size=15):
|
71 |
+
warn_output = ""
|
72 |
+
if (microphone is not None) and (file_upload is not None):
|
73 |
+
warn_output = (
|
74 |
+
"WARNING: You've uploaded an audio file and used the microphone. "
|
75 |
+
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
76 |
+
)
|
77 |
+
|
78 |
+
elif (microphone is None) and (file_upload is None):
|
79 |
+
return "ERROR: You have to either use the microphone or upload an audio file"
|
80 |
+
|
81 |
+
file = microphone if microphone is not None else file_upload
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
start_time = time.time()
|
84 |
+
text = pipe(file, batch_size=batch_size, return_timestamps=False)["text"]
|
|
|
|
|
|
|
85 |
|
86 |
end_time = time.time()
|
|
|
87 |
output_time = end_time - start_time
|
88 |
word_count = len(text.split())
|
89 |
|
|
|
105 |
*CPU Usage: {cpu_usage}%*
|
106 |
"""
|
107 |
|
108 |
+
return warn_output + text.strip(), system_info
|
109 |
+
|
110 |
|
111 |
|
|
|
112 |
|
113 |
+
|
114 |
+
# ------------summary section------------
|
115 |
+
|
116 |
+
|
117 |
+
# ------------for app integration later------------
|
118 |
+
|
119 |
+
nlp = spacy.blank("nb") # codename 'nb' = Norwegian Bokmål
|
120 |
+
nlp.add_pipe('sentencizer')
|
121 |
+
spacy_stop_words = spacy.lang.nb.stop_words.STOP_WORDS
|
122 |
+
|
123 |
+
summarization_model = AutoModel.from_pretrained("NbAiLab/nb-bert-large")
|
124 |
+
summarization_tokenizer = AutoTokenizer.from_pretrained("NbAiLab/nb-bert-large") # <--not sure if this is needed..is not the tokenizer already part of this model..?
|
125 |
+
# pipe = pipeline("fill-mask", model="NbAiLab/nb-bert-large")
|
126 |
|
127 |
@spaces.GPU()
|
|
|
128 |
def clean_text(text):
|
129 |
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
|
130 |
text = re.sub(r'[^\w\s]', '', text)
|
131 |
text = re.sub(r'\s+', ' ', text).strip()
|
132 |
return text
|
133 |
|
134 |
+
@spaces.GPU()
|
135 |
+
def preprocess_text(text, file_upload):
|
|
|
|
|
136 |
|
137 |
+
if (text is not None) and (file_upload is None):
|
138 |
+
doc = nlp(text)
|
139 |
+
|
140 |
+
elif (text is None) and (file_upload is not None):
|
141 |
+
doc = nlp(file_upload)
|
142 |
|
|
|
|
|
|
|
|
|
143 |
stop_words = spacy_stop_words
|
144 |
words = [token.text for token in doc if token.text.lower() not in stop_words]
|
145 |
return ' '.join(words)
|
146 |
|
|
|
147 |
@spaces.GPU()
|
148 |
+
def summarize_text(text, file_upload):
|
149 |
+
#
|
150 |
+
# ----add same if/elif logic as above here----
|
151 |
+
#
|
152 |
preprocessed_text = preprocess_text(text)
|
153 |
inputs = summarization_tokenizer(preprocessed_text, max_length=1024, return_tensors="pt", truncation=True)
|
154 |
inputs = inputs.to(device)
|
155 |
summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True)
|
156 |
return summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
157 |
+
|
158 |
@spaces.GPU()
|
159 |
+
def build_similarity_matrix(sentences):
|
160 |
similarity_matrix = nx.Graph()
|
161 |
for i, tokens_a in enumerate(sentences):
|
162 |
for j, tokens_b in enumerate(sentences):
|
|
|
164 |
common_words = set(tokens_a) & set(tokens_b)
|
165 |
similarity_matrix.add_edge(i, j, weight=len(common_words))
|
166 |
return similarity_matrix
|
|
|
167 |
|
168 |
+
# PageRank
|
|
|
169 |
@spaces.GPU()
|
170 |
+
def graph_based_summary(text, file_upload, num_paragraphs=3):
|
171 |
+
#
|
172 |
+
# ----add same if/elif logic as above here----
|
173 |
+
#
|
174 |
sentences = [sent.text for sent in doc.sents]
|
175 |
if len(sentences) < num_paragraphs:
|
176 |
+
return ' '.join(sentences)
|
177 |
|
178 |
sentence_tokens = [nlp(sent) for sent in sentences]
|
179 |
stop_words = spacy_stop_words
|
180 |
filtered_tokens = [[token.text for token in tokens if token.text.lower() not in stop_words] for tokens in sentence_tokens]
|
181 |
+
similarity_matrix = build_similarity_matrix(filtered_tokens)
|
182 |
|
183 |
scores = nx.pagerank(similarity_matrix)
|
184 |
ranked_sentences = sorted(((scores[i], sent) for i, sent in enumerate(sentences)), reverse=True)
|
185 |
return ' '.join([sent for _, sent in ranked_sentences[:num_paragraphs]])
|
186 |
|
|
|
187 |
@spaces.GPU()
|
188 |
+
def lex_rank_summary(text, file_upload, num_paragraphs=3, threshold=0.1):
|
189 |
+
|
190 |
+
if (text is not None) and (file_upload is None):
|
191 |
+
doc = nlp(text)
|
192 |
+
|
193 |
+
elif (text is None) and (file_upload is not None):
|
194 |
+
doc = nlp(file_upload)
|
195 |
+
|
196 |
sentences = [sent.text for sent in doc.sents]
|
197 |
if len(sentences) < num_paragraphs:
|
198 |
+
return ' '.join(sentences)
|
199 |
|
200 |
stop_words = spacy_stop_words
|
201 |
vectorizer = TfidfVectorizer(stop_words=list(stop_words))
|
|
|
209 |
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
|
210 |
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
|
211 |
|
|
|
212 |
@spaces.GPU()
|
213 |
+
def text_rank_summary(text, file_upload, num_paragraphs=3):
|
214 |
+
|
215 |
+
if (text is not None) and (file_upload is None):
|
216 |
+
doc = nlp(text)
|
217 |
+
|
218 |
+
elif (text is None) and (file_upload is not None):
|
219 |
+
doc = nlp(file_upload)
|
220 |
+
|
221 |
sentences = [sent.text for sent in doc.sents]
|
222 |
if len(sentences) < num_paragraphs:
|
223 |
+
return ' '.join(sentences)
|
224 |
|
225 |
stop_words = spacy_stop_words
|
226 |
vectorizer = TfidfVectorizer(stop_words=list(stop_words))
|
|
|
232 |
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
|
233 |
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
|
234 |
|
235 |
+
def save_to_pdf(text, summary):
|
236 |
+
pdf = FPDF()
|
237 |
+
pdf.add_page()
|
238 |
+
pdf.set_font("Arial", size=12)
|
239 |
+
#
|
240 |
+
# ----add same if/elif logic as above here----
|
241 |
+
#
|
242 |
+
if text:
|
243 |
+
pdf.multi_cell(0, 10, "Text:\n" + text)
|
244 |
|
245 |
+
pdf.ln(10) # Paragraph metric
|
246 |
+
|
247 |
+
if summary:
|
248 |
+
pdf.multi_cell(0, 10, "Summary:\n" + summary)
|
249 |
+
|
250 |
+
pdf_output_path = "transcription_.pdf"
|
251 |
+
pdf.output(pdf_output_path)
|
252 |
+
return pdf_output_path
|
253 |
|
254 |
iface = gr.Blocks()
|
255 |
+
|
256 |
with iface:
|
257 |
+
|
258 |
gr.HTML(SIDEBAR_INFO)
|
259 |
gr.Markdown(HEADER_INFO)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
+
with gr.Row():
|
262 |
+
gr.Markdown('''
|
263 |
+
##### Here you will get transcription output
|
264 |
+
##### ''')
|
265 |
+
microphone = gr.Audio(sources="microphone", type="filepath")
|
266 |
+
upload = gr.Audio(sources="upload", type="filepath")
|
267 |
+
|
268 |
+
|
269 |
+
transcribe_btn = gr.Button("Transcribe Interview")
|
270 |
+
text_output = gr.Textbox()
|
271 |
+
system_info = gr.Textbox(label="System Info")
|
272 |
+
|
273 |
+
transcribe_btn.click(transcribe_audio,
|
274 |
+
[microphone, upload], [text_output]
|
275 |
+
[system_info]
|
276 |
+
)
|
277 |
+
|
278 |
+
with gr.Tabs():
|
279 |
+
|
280 |
+
with gr.TabItem("Summary | PageRank"):
|
281 |
+
text_input_graph = gr.Textbox(label="Input Text", placeholder="txt2summarize")
|
282 |
+
summary_output_graph = gr.Textbox(label="PageRank | token-based similarity")
|
283 |
+
|
284 |
+
gr.Markdown("""
|
285 |
+
**token-based**: similarity matrix edge weights representing token overlap/
|
286 |
+
ranked by their centrality in the graph (good with dense inter-sentence relationships)
|
287 |
+
""")
|
288 |
+
gr.Markdown("""
|
289 |
+
*Bjørn*: **gir sammendrag som fanger opp de mest relevante setninger i teksten**
|
290 |
+
""")
|
291 |
+
|
292 |
+
summarize_transcribed_button_graph = gr.Button("Summary of Transcribed Text, Click Here")
|
293 |
+
summarize_transcribed_button_graph.click(fn=lambda text: graph_based_summary(text), inputs=[transcribed_text], outputs=[summary_output_graph])
|
294 |
+
summarize_uploaded_button_graph = gr.Button("Upload Text to Summarize, Click Here")
|
295 |
+
summarize_uploaded_button_graph.click(fn=graph_based_summary(file_upload), inputs=[text_input_graph], outputs=[summary_output_graph])
|
296 |
+
|
297 |
+
with gr.TabItem("Summary | LexRank"):with gr.Blocks():
|
298 |
+
text_output = gr.Textbox(label="Transcription Output")
|
299 |
+
text_input_lex = gr.Textbox(label="Input Text", placeholder="txt2summarize")
|
300 |
+
summary_output_lex = gr.Textbox(label="LexRank | cosine similarity")
|
301 |
+
|
302 |
+
gr.Markdown("""
|
303 |
+
**semantic**: TF-IDF vectorization@cosine similarity matrix, ranked by eigenvector centrality.
|
304 |
+
(good for sparse graph structures with thresholding)
|
305 |
+
""")
|
306 |
+
gr.Markdown("""
|
307 |
+
*Bjørn*: **gir sammendrag som best fanger opp betydningen av hele teksten**
|
308 |
+
""")
|
309 |
+
|
310 |
+
summarize_transcribed_button_lex = gr.Button("Summary of Transcribed Text, Click Here")
|
311 |
+
summarize_transcribed_button_lex.click(fn=lambda text: lex_rank_summary(text), inputs=[transcribed_text], outputs=[summary_output_lex])
|
312 |
+
summarize_uploaded_button_lex = gr.Button("Upload Text to Summarize, Click Here")
|
313 |
+
summarize_uploaded_button_lex.click(fn=lex_rank_summary(file_upload), inputs=[text_input_lex], outputs=[summary_output_lex])
|
314 |
+
|
315 |
+
with gr.TabItem("Summary | TextRank"):
|
316 |
+
text_input_text_rank = gr.Textbox(label="Input Text", placeholder="txt2summarize")
|
317 |
+
summary_output_text_rank = gr.Textbox(label="TextRank | lexical similarity")
|
318 |
+
|
319 |
+
gr.Markdown("""
|
320 |
+
**sentence**: graph with weighted edges based on lexical similarity. (i.e" "sentence similarity"word overlap)/sentence similarity
|
321 |
+
""")
|
322 |
+
gr.Markdown("""
|
323 |
+
*Bjørn*: **sammendrag basert på i de setningene som ligner mest på hverandre fra teksten**
|
324 |
+
|
325 |
+
""")
|
326 |
+
|
327 |
+
summarize_transcribed_button_text_rank = gr.Button("Summary of Transcribed Text, Click Here")
|
328 |
+
summarize_transcribed_button_text_rank.click(fn=lambda text: text_rank_summary(text), inputs=[transcribed_text], outputs=[summary_output_text_rank])
|
329 |
+
summarize_uploaded_button_text_rank = gr.Button("Upload Text to Summarize, Click Here")
|
330 |
+
summarize_uploaded_button_text_rank.click(fn=text_rank_summary(file_upload), inputs=[text_input_text_rank], outputs=[summary_output_text_rank])
|
331 |
+
|
332 |
+
|
333 |
+
with gr.TabItem("Download PDF"):
|
334 |
+
pdf_text_only = gr.Button("Download PDF with Transcribed Text Only")
|
335 |
+
pdf_summary_only = gr.Button("Download PDF with Summary-of-Transcribed-Text Only")
|
336 |
+
pdf_both = gr.Button("Download PDF with Both")
|
337 |
+
|
338 |
+
pdf_output = gr.File(label="Download PDF")
|
339 |
+
|
340 |
+
pdf_text_only.click(fn=lambda text: save_to_pdf(text, ""), inputs=[transcribed_text], outputs=[pdf_output])
|
341 |
+
pdf_summary_only.click(fn=lambda summary: save_to_pdf("", summary), inputs=[summary_output_graph, summary_output_lex, summary_output_text_rank], outputs=[pdf_output]) # Includes all summary outputs
|
342 |
+
pdf_both.click(fn=lambda text, summary: save_to_pdf(text, summary), inputs=[transcribed_text, summary_output_graph], outputs=[pdf_output])
|