added simple progress bar
Browse files- app_batch.py +4 -2
- owl_batch.py +4 -2
app_batch.py
CHANGED
@@ -25,7 +25,8 @@ def run_owl_batch(
|
|
25 |
species_prompt: str,
|
26 |
conf_threshold: float,
|
27 |
fps_processed: int,
|
28 |
-
scaling_factor: float
|
|
|
29 |
) -> tuple[str, str, str]:
|
30 |
"""
|
31 |
args:
|
@@ -65,7 +66,8 @@ def run_owl_batch(
|
|
65 |
fps_processed=fps_processed,
|
66 |
scaling_factor=1/scaling_factor,
|
67 |
batch_size=BATCH_SIZE,
|
68 |
-
save_dir=f"temp_{timestamp}"
|
|
|
69 |
|
70 |
end_time = time.time()
|
71 |
print(f'Processing time: {end_time - start_time} seconds')
|
|
|
25 |
species_prompt: str,
|
26 |
conf_threshold: float,
|
27 |
fps_processed: int,
|
28 |
+
scaling_factor: float,
|
29 |
+
progress=gr.Progress()
|
30 |
) -> tuple[str, str, str]:
|
31 |
"""
|
32 |
args:
|
|
|
66 |
fps_processed=fps_processed,
|
67 |
scaling_factor=1/scaling_factor,
|
68 |
batch_size=BATCH_SIZE,
|
69 |
+
save_dir=f"temp_{timestamp}",
|
70 |
+
progress=progress)
|
71 |
|
72 |
end_time = time.time()
|
73 |
print(f'Processing time: {end_time - start_time} seconds')
|
owl_batch.py
CHANGED
@@ -2,6 +2,7 @@ import os
|
|
2 |
import shutil
|
3 |
from tqdm import tqdm
|
4 |
import cv2
|
|
|
5 |
import pandas as pd
|
6 |
import torch
|
7 |
from PIL import Image
|
@@ -18,14 +19,15 @@ def owl_batch_video(
|
|
18 |
fps_processed: int = 1,
|
19 |
scaling_factor: float = 0.5,
|
20 |
batch_size: int = 8,
|
21 |
-
save_dir: str = "temp/"
|
|
|
22 |
):
|
23 |
pos_preds = []
|
24 |
neg_preds = []
|
25 |
|
26 |
df = pd.DataFrame(columns=["video path", "detection?"])
|
27 |
|
28 |
-
for vid in input_vids:
|
29 |
detection = owl_video_detection(vid,
|
30 |
target_prompt,
|
31 |
species_prompt,
|
|
|
2 |
import shutil
|
3 |
from tqdm import tqdm
|
4 |
import cv2
|
5 |
+
import gradio as gr
|
6 |
import pandas as pd
|
7 |
import torch
|
8 |
from PIL import Image
|
|
|
19 |
fps_processed: int = 1,
|
20 |
scaling_factor: float = 0.5,
|
21 |
batch_size: int = 8,
|
22 |
+
save_dir: str = "temp/",
|
23 |
+
progress=gr.Progress()
|
24 |
):
|
25 |
pos_preds = []
|
26 |
neg_preds = []
|
27 |
|
28 |
df = pd.DataFrame(columns=["video path", "detection?"])
|
29 |
|
30 |
+
for vid in progress.tqdm(input_vids, desc="Processing videos"):
|
31 |
detection = owl_video_detection(vid,
|
32 |
target_prompt,
|
33 |
species_prompt,
|