caleb2's picture
initial commit
d68c650
raw
history blame
12.2 kB
import json
import gradio as gr
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import numpy as np
import sympy
from matplotlib.cm import get_cmap
from stnn.nn import stnn
from stnn.pde.pde_system import PDESystem
def adjust_to_nice_number(value, round_down = False):
"""
Adjust the given value to the nearest "nice" number. Used for colorbar tickmarks.
"""
if value == 0:
return value
is_negative = False
if value < 0:
round_down = True
is_negative = True
value = -value
exponent = np.floor(np.log10(value)) # Find exponent of 10
fractional_part = value / 10**exponent # Find leading digit(s)
if round_down:
if fractional_part < 1.5:
nice_fractional = 1
elif fractional_part < 3:
nice_fractional = 2
elif fractional_part < 7:
nice_fractional = 5
else:
nice_fractional = 10
else:
if fractional_part <= 1:
nice_fractional = 1
elif fractional_part <= 2:
nice_fractional = 2
elif fractional_part <= 5:
nice_fractional = 5
else:
nice_fractional = 10
nice_value = nice_fractional * 10**exponent if round_down or nice_fractional != 10 else 10**(exponent + 1)
if is_negative:
nice_value = -nice_value
return nice_value
def find_nice_values(min_val_raw, max_val, num_values = 4):
"""
Calculate 'num_values' evenly spaced "nice" values within the given range. Used for colorbar tickmarks.
"""
# Calculate rough spacing between values
min_val = adjust_to_nice_number(min_val_raw)
frac_val = (min_val - min_val_raw) / (max_val - min_val_raw)
if frac_val < 1 / num_values:
min_val = min_val_raw
raw_spacing = (max_val - min_val) / (num_values - 1)
# Calculate order of magnitude of the spacing
magnitude = np.floor(np.log10(raw_spacing))
nice_factors = np.array([1, 2, 5, 10])
normalized_spacing = raw_spacing / (10**magnitude)
closest_factor = nice_factors[np.argmin(np.abs(nice_factors - normalized_spacing))]
nice_spacing = closest_factor * (10**magnitude)
nice_values = min_val + nice_spacing * np.arange(num_values)
# Adjust if last value exceeds max_val
if nice_values[-1] < max_val - nice_spacing:
last_val = nice_values[-1]
nice_values = np.append(nice_values, [last_val + nice_spacing])
return [val for val in nice_values if min_val <= val <= max_val]
def format_tick_label(val):
"""
Format w/ scientific notation for large/small values.
"""
if val != 0:
magnitude = np.abs(np.floor(np.log10(np.abs(val))))
if magnitude > 2:
return f'{val:.1e}'
elif magnitude > 1:
return f'{val:.0f}'
elif magnitude > 0:
return f'{val:.1f}'
else:
return f'{val:.2f}'
else:
return f'{val}'
def plot_simple(system, rho, fontscale = 1):
# Major axis of outer boundary
b2 = system.b2
# Get x, y grids from 'PDESystem' object
x, y = system.get_xy_grids()
# wrap around values for continuity
rho = np.append(rho, rho[:, 0:1], axis = 1)
# Color bar limits
vmin = np.nanmin(rho)
vmax = np.nanmax(rho)
fig = plt.figure(figsize = (5, 5))
ax = plt.gca()
im = ax.contourf(x, y, rho, levels = np.linspace(vmin, vmax, 100), cmap = get_cmap('hsv'))
ax.set_title('rho(x,y)', fontsize = fontscale * 16)
for label in ax.get_xticklabels() + ax.get_yticklabels():
label.set_fontsize(fontscale * 12)
ax.set_aspect(1.0)
fac = 1.05
ax.set_xlim([-fac * b2, fac * b2])
ax.set_ylim([-fac * b2, fac * b2])
cbar = fig.colorbar(im, shrink = 0.8)
# Set colorbar ticks and labels to "nice" values
nice_values = find_nice_values(vmin, vmax, num_values = 5)
cbar.set_ticks(nice_values)
cbar.ax.yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: format_tick_label(x)))
return fig
def evaluate_2d_expression(expr_str, xvals, yvals):
x, y = sympy.symbols('s t')
expr = sympy.sympify(expr_str)
f = sympy.lambdify((x, y), expr, modules = ['numpy'])
result = f(xvals, yvals)
if isinstance(result, (int, float)):
return result * np.ones(xvals.shape)
return f(xvals, yvals)
'''
# Currently unused in gradio interface
def direct_solution(ell, a2, eccentricity, ibc_str, obc_str, max_krylov_dim, max_iterations):
# Direct solution
start = timeit.default_timer()
pde_config = {}
for key in ['nx1', 'nx2', 'nx3']:
pde_config[key] = stnn_config[key]
pde_config['ell'] = ell
pde_config['eccentricity'] = eccentricity
pde_config['a2'] = a2
system = PDESystem(pde_config)
try:
ibf_data = evaluate_2d_expression(ibc_str, system.x2_ib, system.x2_ib - system.x3_ib)[system.ib_slice]
except:
raise ValueError(f"Failed to parse the expression `{ibc_str}` for the boundary condition @ the inner boundary.")
try:
obf_data = evaluate_2d_expression(obc_str, system.x2_ob, system.x2_ob - system.x3_ob)[system.ob_slice]
except:
raise ValueError(f"Failed to parse the expression `{obc_str}` for the boundary condition @ the outer boundary.")
if np.any(np.isnan(ibf_data)):
raise ValueError(f"The expression `{ibc_str}` evaluates to nan at one or more grid points.")
if np.any(np.isnan(obf_data)):
raise ValueError(f"The expression `{obc_str}` evaluates to nan at one or more grid points.")
ibf_data, obf_data, b = system.convert_boundary_data(ibf_data, obf_data)
L_xp = csr_matrix(system.L) # Sparse matrix representation of the PDE operator
nx1, nx2, nx3 = system.params['nx1'], system.params['nx2'], system.params['nx3']
b_xp = asarray(b.reshape((nx1 * nx2 * nx3,))) # r.h.s. vector
def callback(res):
print(f'GMRES residual: {res}')
f_xp, info = spx.linalg.gmres(L_xp, b_xp, maxiter=max_iterations, tol=1e-7, restart=max_krylov_dim, callback=callback)
residual = (xp.linalg.norm(b_xp - L_xp @ f_xp) / xp.linalg.norm(b_xp))
if info > 0:
warnings.simplefilter('always')
warnings.warn(f'GMRES solver did not converge. Number of iterations: {info}; residual: {residual}', RuntimeWarning)
f = asnumpy(f_xp)
rho_direct = np.sum(f.reshape((nx1, nx2, nx3)), axis=-1)
direct_time = timeit.default_timer() - start
print(f'Done with direct solution. Time: {direct_time} seconds.')
fig = plot_simple(system, rho_direct)
return fig, info
'''
def predict_pde_solution(ell, a2, eccentricity, ibc_str, obc_str):
if a2 <= eccentricity:
raise ValueError(f'Outer minor axis must be greater than the eccentricity (here, {eccentricity}).')
pde_config = {}
for key in ['nx1', 'nx2', 'nx3']:
pde_config[key] = stnn_config[key]
pde_config['ell'] = ell
pde_config['eccentricity'] = eccentricity
pde_config['a2'] = a2
system = PDESystem(pde_config)
try:
ibf_data = evaluate_2d_expression(ibc_str, system.x2_ib, system.x2_ib - system.x3_ib)[system.ib_slice]
except:
raise ValueError(f"Failed to parse the expression `{ibc_str}` for the boundary condition @ the inner boundary.")
try:
obf_data = evaluate_2d_expression(obc_str, system.x2_ob, system.x2_ob - system.x3_ob)[system.ob_slice]
except:
raise ValueError(f"Failed to parse the expression `{obc_str}` for the boundary condition @ the outer boundary.")
if np.any(np.isnan(ibf_data)):
raise ValueError(f"The expression `{ibc_str}` evaluates to NaN at one or more grid points.")
if np.any(np.isnan(obf_data)):
raise ValueError(f"The expression `{obc_str}` evaluates to NaN at one or more grid points.")
# Permute and reshape boundary data to the format expected by the STNN model
ibf_data, obf_data, b = system.convert_boundary_data(ibf_data, obf_data)
'''
# Currently unused in gradio interface
ibf_data, obf_data, b, _ = system.generate_random_bc(func_gen_id)
'''
# Load some relevant quantities from the config dictionaries
ell_min, ell_max = stnn_config['ell_min'], stnn_config['ell_max']
a2_min, a2_max = stnn_config['a2_min'], stnn_config['a2_max']
nx1, nx2, nx3 = pde_config['nx1'], pde_config['nx2'], pde_config['nx3']
# Combine boundary data in single vector
bf = np.zeros((1, 2 * nx2, nx3 // 2))
bf[:, :nx2, :] = ibf_data[np.newaxis, ...]
bf[:, nx2:, :] = obf_data[np.newaxis, ...]
# Normalize and combine parameters
params = np.zeros((1, 3))
params[0, 0] = (a2 - a2_min) / (a2_max - a2_min)
params[0, 1] = (ell - ell_min) / (ell_max - ell_min)
params[0, 2] = eccentricity
rho = model.predict([params, bf])
fig = plot_simple(system, rho[0, ...])
return fig
with open('T5_config.json', 'r', encoding = 'utf-8') as json_file:
stnn_config = json.load(json_file)
model = stnn.build_stnn(stnn_config)
model.load_weights('T5_weights.h5')
with gr.Blocks() as demo:
gr.Markdown("# Stacked Tensorial Neural Network (STNN) demo"
"\nThis demo uses the model architecture from [arXiv:2312.14979](https://arxiv.org/abs/2312.14979) "
"to solve a parametric PDE problem on an elliptical annular domain. "
"See the paper for a detailed description of the problem and its applications."
"<br/>The [GitHub repo](https://github.com/caleb399/stacked_tensorial_nn) contains additional examples, "
"including intructions for solving the PDE using a conventional iterative method (GMRES). "
"Due to the long runtime of solving the PDE in this way, it is not included in the demo.")
gr.Markdown("<br/>The PDE is "
"$\ell \\left( \\boldsymbol{\hat{u}} \cdot \\nabla \\right) f(\\boldsymbol{r}, w) = \partial_{ww} f(\\boldsymbol{r}, w)$, "
"where $\ell$ is a parameter and $\\boldsymbol{\hat{u}} = (\\cos w, \\sin w)$. "
"Here, $\\boldsymbol{r}$ is the 2D position vector, and $w$ is an angular coordinate unrelated to "
"the spatial domain. The model predicts the density !\\rho(\\boldsymbol{r}) = \int f(\\boldsymbol{r}, w) dw! "
"on elliptical annular domains parameterized as shown below. ",
latex_delimiters = [{"left": "$", "right": "$", "display": False}, {"left": "!", "right": "!", "display": True}])
with gr.Row():
with gr.Column():
gr.Markdown(
"## PDE Parameters \n The model was trained on solutions of the PDE with $\ell$ between 0.01 and 100, $a$ between 2 and 20, "
"and $ecc$ between 0 and 0.8.", latex_delimiters = [{"left": "$", "right": "$", "display": False},
{"left": "!", "right": "!", "display": True}])
ell_input = gr.Number(label = "ell (must be > 0)", value = 1.0)
eccentricity_input = gr.Number(
label = "ecc: eccentricity of the inner boundary (must be >= 0 and <= 0.999)",
value = 0.5, minimum = 0.0, maximum = 0.999)
a2_input = gr.Number(label = "a: Minor axis of outer boundary (must be > eccentricity)", value = 2.0)
gr.Markdown(
"## Boundary Conditions \n $(s, t)$ are angular coordinates parameterizing the PDE domain, "
"related to $\\boldsymbol{r}$ and $w$ by a coordinate transformation. "
"Specifically, $s$ is the polar elliptical coordinate along the boundary (inner or outer), with values "
"between $-\pi$ and $\pi$, while $t = s - w$. Boundary conditions are generated from grid points "
"distributed uniformly over the allowable values of $s$ and $t$."
"<br/><br/>For the PDE problem to be well-posed, boundary data should only be specified where "
"$\\boldsymbol{\hat{u}} \cdot \\boldsymbol{\hat{n}} > 0$, where $\\boldsymbol{\hat{n}}$ is the "
"inward-pointing unit normal vector. This requirement constrains the allowable values of $t$."
" and is automatically enforced when building boundary conditions from the user-specified expressions below.",
latex_delimiters = [{"left": "$", "right": "$", "display": False}])
inner_boundary = gr.Textbox(label = "Inner boundary condition", value = "0.5 * (1 + sign(cos(s)))")
outer_boundary = gr.Textbox(label = "Outer boundary condition", value = "1 + 0.1 * cos(4*s)")
submit_button = gr.Button("Submit")
with gr.Column():
gr.Markdown("## Predicted Solution")
predicted_output_plot = gr.Plot()
submit_button.click(
fn = predict_pde_solution,
inputs = [ell_input, a2_input, eccentricity_input, inner_boundary, outer_boundary],
outputs = [predicted_output_plot]
)
demo.launch()