File size: 4,277 Bytes
d68c650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import numpy as np

"""
Interface to a subset of the test functions listed at
https://en.wikipedia.org/wiki/Test_functions_for_optimization
"""


def rastrigin(x, y):
	args = (x, y)
	A = 10
	return A * len(x) + sum([(xi**2 - A * np.cos(2 * np.pi * xi)) for xi in args])


def ackley(x, y):
	return -20 * np.exp(-0.2 * np.sqrt(0.5 * (x**2 + y**2))) - \
		np.exp(0.5 * (np.cos(2 * np.pi * x) + np.cos(2 * np.pi * y))) + np.e + 20


def sphere(x, y):
	return x**2 + y**2


def rosenbrock(x, y):
	return 100 * (y - x**2)**2 + (1 - x)**2


def beale(x, y):
	return (1.5 - x + x * y)**2 + (2.25 - x + x * y**2)**2 + (2.625 - x + x * y**3)**2


def goldstein_price(x, y):
	return (1 + (x + y + 1)**2 * (19 - 14 * x + 3 * x**2 - 14 * y + 6 * x * y + 3 * y**2)) * \
		(30 + (2 * x - 3 * y)**2 * (18 - 32 * x + 12 * x**2 + 48 * y - 36 * x * y + 27 * y**2))


def booth(x, y):
	return (x + 2 * y - 7)**2 + (2 * x + y - 5)**2


def bukin(x, y):
	return 100 * np.sqrt(abs(y - 0.01 * x**2)) + 0.01 * abs(x + 10)


def matyas(x, y):
	return 0.26 * (x**2 + y**2) - 0.48 * x * y


def levi(x, y):
	return np.sin(3 * np.pi * x)**2 + (x - 1)**2 * (1 + np.sin(3 * np.pi * y)**2) + \
		(y - 1)**2 * (1 + np.sin(2 * np.pi * y)**2)


def himmelblau(x, y):
	return (x**2 + y - 11)**2 + (x + y**2 - 7)**2


def three_hump_camel(x, y):
	return 2 * x**2 - 1.05 * x**4 + x**6 / 6 + x * y + y**2


def easom(x, y):
	return -np.cos(x) * np.cos(y) * np.exp(-((x - np.pi)**2 + (y - np.pi)**2))


def cross_in_tray(x, y):
	return -0.0001 * (abs(np.sin(x) * np.sin(y) * np.exp(abs(100 - np.sqrt(x**2 + y**2) / np.pi))) + 1)**0.1


def eggholder(x, y):
	return -(y + 47) * np.sin(np.sqrt(abs(x / 2 + (y + 47)))) - x * np.sin(np.sqrt(abs(x - (y + 47))))


def holder_table(x, y):
	return -abs(np.sin(x) * np.cos(y) * np.exp(abs(1 - np.sqrt(x**2 + y**2) / np.pi)))


def mccormick(x, y):
	return np.sin(x + y) + (x - y)**2 - 1.5 * x + 2.5 * y + 1


def schaffer2(x, y):
	return 0.5 + (np.sin(x**2 - y**2)**2 - 0.5) / (1 + 0.001 * (x**2 + y**2))**2


def schaffer4(x, y):
	return 0.5 + (np.cos(np.sin(abs(x**2 - y**2)))**2 - 0.5) / (1 + 0.001 * (x**2 + y**2))**2


def styblinski_tang(x, y):
	args = (x, y)
	return sum([xi**4 - 16 * xi**2 + 5 * xi for xi in args]) / 2


functions = [
	rastrigin,
	ackley,
	sphere,
	rosenbrock,
	beale,
	goldstein_price,
	booth,
	bukin,
	matyas,
	levi,
	himmelblau,
	three_hump_camel,
	easom,
	cross_in_tray,
	eggholder,
	holder_table,
	mccormick,
	schaffer2,
	schaffer4,
	styblinski_tang
]

function_names = [
	'rastrigin',
	'ackley',
	'sphere',
	'rosenbrock',
	'beale',
	'goldstein_price',
	'booth',
	'bukin',
	'matyas',
	'levi',
	'himmelblau',
	'three_hump_camel',
	'easom',
	'cross_in_tray',
	'eggholder',
	'holder_table',
	'mccormick',
	'schaffer2',
	'schaffer4',
	'styblinski_tang'
]

domains = {
	'rastrigin': (-5.12, 5.12),
	'ackley': (-5, 5),
	'sphere': (-1, 1),
	'rosenbrock': {'x': (-2, 2), 'y': (-10, 10)},
	'beale': (-4.5, 4.5),
	'goldstein_price': (-2, 2),
	'booth': (-10, 10),
	'bukin': {'x': (-15, -5), 'y': (-3, 3)},
	'matyas': (-10, 10),
	'levi': (-10, 10),
	'himmelblau': (-5, 5),
	'three_hump_camel': (-5, 5),
	'easom': (-100, 100),
	'cross_in_tray': (-10, 10),
	'eggholder': (-512, 512),
	'holder_table': (-10, 10),
	'mccormick': {'x': (-1.5, 4), 'y': (-3, 4)},
	'schaffer2': (-100, 100),
	'schaffer4': (-100, 100),
	'styblinski_tang': (-5, 5)
}


def scale_input(x, domain):
	min_d, max_d = domain
	return min_d + (max_d - min_d) * x


def get_test_function(X, Y, fun_idx):
	"""
	Evaluates a function on inputs (X, Y).

	Args:
		X (float or array-like): The X input values to be scaled and used in the function.
		Y (float or array-like): The Y input values to be scaled and used in the function.
								Ignored if the function takes only one argument.
		fun_idx (int): The index of the function to be retrieved from a predefined list 'functions'.

	Returns: 
		(float or array-like), values of the function on the grid
	"""
	func = functions[fun_idx]

	domain = domains[func.__name__]
	if isinstance(domain, dict):
		x_scaled = scale_input(X, domain['x'])
		y_scaled = scale_input(Y, domain['y'])
	else:
		x_scaled = scale_input(X, domain)
		y_scaled = scale_input(Y, domain)

	try:
		output = func(X, Y)
	except TypeError:
		output = func(X)
	return output