Spaces:
Sleeping
Sleeping
File size: 11,667 Bytes
d68c650 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import h5py
import numpy as np
# If STRICT_WARNING = True, the program exits when negative values are detected in ibf, obf, or rho
# This is important to check because negative values are unphysical.
STRICT_WARNING = True
def verify_nonnegative(fname, ibf, obf, rho):
"""
Check ibf, obf, and rho for negative values.
"""
found_warning = False
if np.any(ibf < 0):
print(f'Warning: negative values detected in array "ibf" in {fname}; min val: {ibf.min()}')
found_warning = True
elif np.any(obf < 0):
print(f'Warning: negative values detected in array "obf" in {fname}')
found_warning = True
elif np.any(rho < 0):
print(f'Warning: negative values detected in array "rho" in {fname}')
found_warning = True
if found_warning and STRICT_WARNING:
print(f'Exiting program. To avoid exiting on this warning, set STRICT_WARNING to False in {__file__.name}')
exit()
def get_data_from_file(fname, nx2, nx3, Nrange = None):
"""
Retrieves training X from the given HDF5 file. Assumes that the PDE parameters
are stored in datasets with their respective names, i.e., 'ell', 'a1', 'a2'. Likewise,
the density rho(x1,x2) and boundary X ibf(x2,x3) / obf(x2,x3) are stored in datasets
'rho', 'ibf', and 'obf'.
Args:
nx2 (int): Second grid dimension
nx3 (int): Third grid dimension
fname (str): Path to the HDF5 file containing the X.
Nrange (tuple, optional): A tuple of two integers specifying the range of X to extract (start, end).
Defaults to None.
Returns:
tuple: Tuple of extracted X
Raises:
ValueError: If the file does not contain the required datasets.
"""
if not isinstance(fname, str):
raise TypeError('Filename must be a string.')
type_check1 = not (Nrange is None or isinstance(Nrange, (tuple, list)))
type_check2 = False
if isinstance(Nrange, (tuple, list)):
type_check2 = len(Nrange) != 2
if not type_check2:
type_check2 = not all((isinstance(i, int) or i is None) for i in Nrange)
if type_check1 or type_check2:
raise TypeError('Nrange must be a length-2 tuple or list of integers.')
if Nrange is None:
N1, N2 = None, None
else:
N1, N2 = Nrange
# Check that all datasets are present
dset_names = ['ell', 'a1', 'a2', 'rho', 'ibf', 'obf']
with h5py.File(fname, 'r') as input_file:
missing_keys = [key for key in dset_names if key not in input_file.keys()]
if missing_keys:
raise ValueError(f"Missing / incorrectly labeled datasets in file {fname}.'"
f"Could not find datasets: {', '.join(missing_keys)}")
ell = input_file['ell'][N1:N2]
a2 = input_file['a2'][N1:N2] # minor axis of outer boundary
a1 = input_file['a1'][N1:N2] # minor axis of inner boundary
eccentricity = np.ones_like(a1) - a1 # eccentricity of inner boundary
rho = input_file['rho'][N1:N2]
ibf = input_file['ibf'][N1:N2] # boundary X on inner boundary
obf = input_file['obf'][N1:N2] # boundary X on outer boundary
verify_nonnegative(fname, ibf, obf, rho)
# Combine 'ibf' and 'obf' into single array
N = rho.shape[0]
bf = np.zeros((N, 2 * nx2, nx3 // 2), dtype = np.float32)
bf[:, :nx2, :] = ibf
bf[:, nx2:, :] = obf
return a2, ell, eccentricity, bf, rho
def reshape_and_stack(a2, ell, ecc):
a2 = a2.reshape((-1, 1))
ell = ell.reshape((-1, 1))
ecc = ecc.reshape((-1, 1))
return np.hstack([a2, ell, ecc])
def apply_normalization(bf, rho):
fac = np.average(np.abs(rho), axis = (1, 2))
fac = fac.reshape((-1, 1, 1))
bf /= fac
rho /= fac
return bf, rho
def load_data(files, nx2, nx3, ell_min, ell_max, a2_min, a2_max,
Nrange_list = None, params_slice = None, normalize_data = False):
"""
Loads X from the specified files and processes it for use with the STNN.
Args:
nx2 (int): Second grid dimension
nx3 (int): Third grid dimension
ell_min / ell_max (float): Minimum / maximum value of 'ell' over parameter space
a2_min / a2_max (float): Minimum / maximum value of 'a2' over parameter space
files (str or list of str): List of file paths containing the X
Nrange_list (list of tuples, optional): Slice indices for the extracting X from the corresponding file. If
given, must have the same number of elements as 'file_list'. Defaults
to None.
params_slice (slice, optional): Boolean array for selecting X over a subset of parameter space (ell, a1, a2).
Defaults to None.
normalize_data (bool, optional): Flag to normalize 'bf' and 'rho'. Defaults to False.
Returns:
tuple: A tuple containing the values of ell, a1, a2, bf, and rho. The parameters
ell, a1, a2 are combined into a single array 'params'.
"""
if isinstance(files, (list, tuple)) and len(files) == 0:
raise ValueError(f'List of files provided to "load_data" is empty.')
if not isinstance(files, (list, tuple)):
files = [files]
if Nrange_list is None or len(Nrange_list) == 0:
# Default
Nrange_list = [None for _ in range(len(files))]
else:
# User-specified; check shapes
if not isinstance(Nrange_list, (list, tuple)):
Nrange_list = [Nrange_list]
if len(files) != len(Nrange_list):
raise ValueError('List of input files must have same length as list of Nrange tuples')
a2_list = []
ell_list = []
ecc_list = []
bf_list = []
rho_list = []
# Get X from each file and add to the lists
for file, Nrange in zip(files, Nrange_list):
a2, ell, ecc, bf, rho = get_data_from_file(file, nx2, nx3, Nrange = Nrange)
a2_list.append(a2)
ell_list.append(ell)
ecc_list.append(ecc)
bf_list.append(bf)
rho_list.append(rho)
a2 = np.concatenate(a2_list)
ell = np.concatenate(ell_list)
ecc = np.concatenate(ecc_list)
bf = np.vstack(bf_list)
rho = np.vstack(rho_list)
# Map ell and a2 values onto [0, 1]
ell = (ell - ell_min) / (ell_max - ell_min)
a2 = (a2 - a2_min) / (a2_max - a2_min)
params = reshape_and_stack(a2, ell, ecc)
if not params_slice is None:
# Extract subset of X, if params_slice is given
params = params[params_slice, ...]
bf = bf[params_slice, ...]
rho = rho[params_slice, ...]
if normalize_data:
bf, rho = apply_normalization(bf, rho)
return params, bf, rho
def load_training_data(file_list, nx2, nx3, ell_min, ell_max, a2_min, a2_max, Nrange_list = None,
params_slice = None, test_size = 0.1, random_state = 23, normalize_data = True):
"""
Loads training X from specified files and preprocesses it for use with training the STNN.
This function wraps the 'load_data' function, adding additional steps specific to preparing training X.
Args:
nx2 (int): Second grid dimension
nx3 (int): Third grid dimension
ell_min / ell_max (float): Minimum / maximum value of 'ell' over parameter space
a2_min / a2_max (float): Minimum / maximum value of 'a2' over parameter space
file_list (list of str): List of file paths containing the X
Nrange_list (list of tuples, optional): Slice indices for the extracting X from the corresponding file. If
given, must have the same number of elements as 'file_list'. Defaults
to None.
params_slice (slice, optional): Boolean array for selecting X over a subset of parameter space (ell, a1, a2).
Defaults to None.
test_size (float, optional): Size of the test/validation dataset as a fraction of the total dataset size.
Defaults to 0.1.
random_state (int, optional): Random seed used to select the train-test split. Defaults to 23.
normalize_data (bool, optional): Flag to normalize 'bf' and 'rho'. Defaults to False.
Returns:
tuple: A tuple containing the values of ell, a1, a2, bf, and rho. The parameters
ell, a1, a2 are combined into a single array 'params'.
"""
params, bf, rho = load_data(file_list, nx2, nx3, ell_min, ell_max, a2_min, a2_max,
Nrange_list = Nrange_list, params_slice = params_slice, normalize_data = normalize_data)
(rho_train, rho_test,
Y_train, Y_test) = train_test_split(rho, [params, bf], test_size = test_size, random_state = random_state)
params_train = Y_train[0]
params_test = Y_test[0]
bf_train = Y_train[1]
bf_test = Y_test[1]
print('Finished loading training X:')
print(f' params_train.shape:\t{params_train.shape}')
print(f' bf_train.shape:\t{bf_train.shape}')
print(f' rho_train.shape:\t{rho_train.shape}')
print(f' params_test.shape:\t{params_test.shape}')
print(f' bf_test.shape:\t{bf_test.shape}')
print(f' rho_test.shape:\t{rho_test.shape}')
# Compute min/max extent of training X in parameter space.
# Note that 'params' is denormalized before computing the max/min.
min_a2 = np.min(a2_min + (a2_max - a2_min) * params[:, 0])
min_ell = np.min(ell_min + (ell_max - ell_min) * params[:, 1])
min_ecc = np.min(params[:, 2])
max_a2 = np.max(a2_min + (a2_max - a2_min) * params[:, 0])
max_ell = np.max(ell_min + (ell_max - ell_min) * params[:, 1])
max_ecc = np.max(params[:, 2])
print('')
print(f' Number of circle samples (train):\t{np.sum(params[:, 2] < 1e-7)}')
print(f' Number of ellipse samples (train):\t{np.sum(params[:, 2] > 0)}')
print(f' Min .. Max in training X:')
print(f' ell:\t{min_ell:.2f} .. {max_ell:.2f}')
print(f' a2:\t{min_a2:.2f} .. {max_a2:.2f}')
print(f' ecc:\t{min_ecc:.2f} .. {max_ecc:.2f}')
print('-------------------------------------------')
return params_train, bf_train, rho_train, params_test, bf_test, rho_test
def train_test_split(X, Y, test_size = 0.1, random_state = None):
"""
Split (X, Y) pairs into random train and test subsets.
Args:
X (np.ndarray or list of arrays): Input dataset
Y (np.ndarray or list of arrays): Labels for the dataset
test_size (float): Proportion of the dataset to include in the test split
random_state (int): Controls the shuffling applied to the X and Y before applying the split
Returns:
X_train, X_test, Y_train, Y_test: Lists containing train-test split of the dataset. The format is
the same as the input X. For example, if 'X' is an array and 'Y' is a list of arrays, then X_train
and X_test will be arrays, and Y_train and Y_test will be lists of arrays.
Note: This function is included primarilyto reduce module dependency requirements, and it may not be memory-efficient
for large datasets. sklearn.model_selection.train_test_split has similar functionality and may be preferred
for performance-critical applications.
"""
if len(X) == 0 or len(Y) == 0:
raise ValueError("Input arrays/lists X and Y cannot be empty.")
input_X_is_array = isinstance(X, np.ndarray)
input_Y_is_array = isinstance(Y, np.ndarray)
if input_X_is_array:
X = [X]
if input_Y_is_array:
Y = [Y]
total_samples = X[0].shape[0]
# Check for consistent number of samples across all datasets
if any(x.shape[0] != total_samples for x in X) or any(y.shape[0] != total_samples for y in Y):
raise ValueError('Inconsistent number of samples.')
Ntest = int(test_size * total_samples)
if Ntest < 1 or Ntest > total_samples:
raise ValueError('Size of test dataset cannot be less than 1 or greater than the total number of samples.')
if random_state is not None:
np.random.seed(random_state)
# Shuffle indices
indices = np.arange(total_samples)
np.random.shuffle(indices)
# Apply shuffled indices to all datasets
shuffled_X = [x[indices] for x in X]
shuffled_Y = [y[indices] for y in Y]
# Split X and Y
X_train = [x[:-Ntest] for x in shuffled_X]
X_test = [x[-Ntest:] for x in shuffled_X]
Y_train = [y[:-Ntest] for y in shuffled_Y]
Y_test = [y[-Ntest:] for y in shuffled_Y]
# Convert back to arrays if original input was array
if input_X_is_array:
X_train, X_test = X_train[0], X_test[0]
if input_Y_is_array:
Y_train, Y_test = Y_train[0], Y_test[0]
return X_train, X_test, Y_train, Y_test
|