Spaces:
Sleeping
Sleeping
File size: 8,565 Bytes
d68c650 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import numpy as np
def generate_piecewise_linear_function(num_pieces, lower, upper, delta = 0.3):
"""
Generates a piece-wise linear function on the interval (lower, upper) that is 2*pi-periodic.
Args:
num_pieces (int): Number of linear pieces in the function.
lower (float): The lower range of the interval
upper (float): The upper range of the interval
delta (float): Parameter determining how rapidly the function varies between the grid points (i.e., modulates
the slopes of the piecewise functions). Larger values mean more variability. Default is 0.3.
Returns:
function: A piece-wise linear function.
"""
# Generate equally spaced points in the interval (-pi, pi)
x_points = np.linspace(lower, upper, num_pieces + 1)
# Generate random y-values for each point
y_points = np.zeros(num_pieces + 1)
y_points[0] = np.random.uniform(-1, 1)
for n in range(1, y_points.shape[0]):
y_points[n] = y_points[n - 1] + 0.3 * np.random.uniform(-1, 1)
y_points[0] = y_points[-1]
min_y = y_points.min()
# ensure y values are nonegative
if min_y < 0:
y_points -= min_y
y_points += np.random.uniform(0, 0.5) # random (constant) offset
def piecewise_linear(x):
"""
Evaluates the piece-wise linear function at a given x.
Args:
x (float): The x-coordinate at which to evaluate the function.
Returns:
float: The y-coordinate of the function at x.
"""
for i in range(num_pieces):
if x_points[i] <= x < x_points[i + 1]:
# Linear interpolation between the two points
slope = (y_points[i + 1] - y_points[i]) / (x_points[i + 1] - x_points[i])
return slope * (x - x_points[i]) + y_points[i]
return y_points[0] # For x = pi
return piecewise_linear
def generate_piecewise_constant_function(num_pieces, lower, upper):
"""
Generates a piece-wise constant function on the interval (lower, upper) that is 2*pi periodic.
Args:
num_pieces (int): Number of constant pieces in the function.
lower (float): The lower range of the interval
upper (float): The upper range of the interval
Returns:
function: A piece-wise constant function.
"""
# Generate equally spaced points in the interval (-pi, pi)
x_points = np.linspace(lower, upper, num_pieces + 1)
# Generate random y-values for each constant piece
y_values = np.random.rand(num_pieces) * 2 - 0 # Random values between 0 and 1
# Ensure the function is 2*pi periodic
y_values = np.append(y_values, y_values[0])
def piecewise_constant(x):
"""
Evaluates the piece-wise constant function at a given x.
Args:
x (float): The x-coordinate at which to evaluate the function.
Returns:
float: The y-coordinate of the function at x.
"""
for i in range(num_pieces):
if x_points[i] <= x < x_points[i + 1]:
return y_values[i]
return y_values[0] # For x = pi
return piecewise_constant
def generate_piecewise_bc(x2_grid, x3_grid, num_pieces):
"""
Generates a piecewise linear function on the domain defined by x2_grid and x3_grid.
Args:
x2_grid (numpy.ndarray): A 2D array, x2 grid values
x3_grid (numpy.ndarray): A 2D array, x3 grid values
num_pieces (int): The number of pieces in the piecewise linear function.
Returns:
numpy.ndarray: A 2D array representing the piecewise linear function
"""
x2_fun = generate_piecewise_linear_function(num_pieces, lower = x2_grid.min(), upper = x2_grid.max())
x3_fun = generate_piecewise_linear_function(num_pieces, lower = x3_grid.min(), upper = x3_grid.max())
x2vals_1d = np.zeros_like(x2_grid[:, 0])
x3vals_1d = np.zeros_like(x3_grid[0, :])
for i in range(x2vals_1d.shape[0]):
x2vals_1d[i] = x2_fun(x2_grid[i, 0])
for i in range(x3vals_1d.shape[0]):
x3vals_1d[i] = x3_fun(x3_grid[0, i])
x2vals_2d, x3vals_2d = np.meshgrid(x2vals_1d, x3vals_1d, indexing = 'ij')
return x2vals_2d * x3vals_2d
def random_2d_gaussian(theta, phi):
"""
Generates a 2D Gaussian G(x,y), where
x = np.cos(0.5 * freq_x * theta - phase_x)
y = np.cos(0.5 * freq_y * phi - phase_y)
Here, the frequencies and phases are randomly sampled, and (theta, phi) define a 2D meshgrid.
Args:
theta (numpy.ndarray): 2D array, meshgrid of the first coordinate
phi (numpy.ndarray): 2D array, meshgrid of the second coordinate
Returns:
numpy.ndarray: A 2D array representing the values of the Gaussian on the grid.
"""
phase_x = np.random.uniform(0, 2 * np.pi)
phase_y = np.random.uniform(0, 2 * np.pi)
freq_x = np.random.randint(1, 2)
freq_y = np.random.randint(1, 2)
x = np.cos(0.5 * freq_x * theta - phase_x)
y = np.cos(0.5 * freq_y * phi - phase_y)
sigma_x = np.random.uniform(0.1, 3.0)
sigma_y = np.random.uniform(0.1, 1.0)
rho = 0
covariance_matrix = np.array([[sigma_x**2, rho * sigma_x * sigma_y],
[rho * sigma_x * sigma_y, sigma_y**2]])
inv_sigma_xx = 1.0 / sigma_x**2
inv_sigma_yy = 1.0 / sigma_y**2
inv_sigma_xy = -rho / (sigma_x * sigma_y)
if np.any(np.linalg.eigvals(covariance_matrix) < 0):
raise ValueError('Covariance matrix is not positive semi-definite.')
def gaussian_2d(x, y):
return np.exp(-0.5 * (inv_sigma_xx * x**2 + inv_sigma_yy * y**2 + 2 * inv_sigma_xy * x * y))
gaussian_values = gaussian_2d(x, y)
return gaussian_values
def generate_random_functions(N, X, Y, num_terms = 16, min_freq = 1, max_freq = 16, func_gen_id = 0):
"""
Generates N random 2pi-periodic functions on a 2D grid as a Fourier series, with different types of
modulation applied to the amplitudes.
Args:
N (int): Number of functions to generate.
X (numpy.ndarray): 2D array representing the values of the first coordinate on the grid
Y (numpy.ndarray): 2D array representing the values of the second coordinate on the grid
num_terms (int, optional): Number of terms in the Fourier series expansion. Default is 16.
min_freq (int, optional): Minimum frequency for the Fourier series terms. Default is 1.
max_freq (int, optional): Maximum frequency for the Fourier series terms. Default is 16.
func_gen_id (int, optional): Type of function to generate based on the decay of the expansion coefficients
as frequency is increased. Values can range from -1 to 4. Default is 0.
Returns:
numpy.ndarray: A 3D numpy array of shape (N, nx, ny) containing the function values.
Raises:
ValueError: If max_freq is less than min_freq or if an invalid func_gen_id is provided.
"""
# Check if the maximum frequency is less than the minimum frequency
if max_freq < min_freq:
raise ValueError('max_freq cannot be less than min_freq')
# Generate uniformly distributed functions if func_gen_id is -1
if func_gen_id == -1:
F_batch = np.random.uniform(0, 1, size = (N,) + X.shape)
return F_batch
# Initialize the batch of functions with zeros
F_batch = np.zeros((N,) + X.shape)
# Loop through each function to be generated
for n in range(N):
# Add a cosine term with a half frequency with 20% chance
if np.random.uniform(0, 1) < 0.2:
amp_cos_half = np.random.uniform(0, 1) # Amplitude for cosine term
phase_cos_half = np.random.uniform(0, 2 * np.pi) # Phase shift for cosine term
F_batch[n] += amp_cos_half * np.cos(0.5 * X - phase_cos_half)
# Fourier series
for _ in range(num_terms):
amplitude = np.random.uniform(-1, 1) # Random amplitude for y-component
kx, ky = np.random.randint(min_freq, max_freq + 1, 2) # Frequencies for x and y components
phase_x = np.random.uniform(0, 2 * np.pi) # Phase shift for x-component
phase_y = np.random.uniform(0, 2 * np.pi) # Phase shift for y-component
# Determine the coefficient amplitude based on the func_gen_id
if func_gen_id == 0:
# No decay applied to amplitude
pass
elif func_gen_id == 1:
if np.random.uniform(0, 1) < 0.5:
amplitude = amplitude / kx
else:
amplitude = amplitude / ky
elif func_gen_id == 2:
amplitude = amplitude / (kx * ky)
elif func_gen_id == 3:
amplitude = amplitude / (kx * kx * ky * ky)
elif func_gen_id == 4:
# Gaussian decay with random covariance matrix
sxx = np.random.uniform(0.1, 1.0)
syy = np.random.uniform(0.1, 1.0)
sxy = np.random.uniform(0.1, 1.0)
amplitude = amplitude * np.exp(-(sxx * kx**2 + syy * ky**2 + sxy * kx * ky))
else:
raise ValueError(
f'Invalid func_gen_id. Should be an integer in the range [-1, 4], but received {func_gen_id}')
# Add the term to the nth function in the batch
F_batch[n] += amplitude * np.cos(kx * X - phase_x) * np.cos(ky * Y - phase_y)
# Adjust the function to ensure it's positive
minF = np.min(F_batch[n])
if minF < 0:
F_batch[n] -= minF
return F_batch
|