Spaces:
Sleeping
Sleeping
File size: 12,245 Bytes
d68c650 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import json
import gradio as gr
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import numpy as np
import sympy
from matplotlib.cm import get_cmap
from stnn.nn import stnn
from stnn.pde.pde_system import PDESystem
def adjust_to_nice_number(value, round_down = False):
"""
Adjust the given value to the nearest "nice" number. Used for colorbar tickmarks.
"""
if value == 0:
return value
is_negative = False
if value < 0:
round_down = True
is_negative = True
value = -value
exponent = np.floor(np.log10(value)) # Find exponent of 10
fractional_part = value / 10**exponent # Find leading digit(s)
if round_down:
if fractional_part < 1.5:
nice_fractional = 1
elif fractional_part < 3:
nice_fractional = 2
elif fractional_part < 7:
nice_fractional = 5
else:
nice_fractional = 10
else:
if fractional_part <= 1:
nice_fractional = 1
elif fractional_part <= 2:
nice_fractional = 2
elif fractional_part <= 5:
nice_fractional = 5
else:
nice_fractional = 10
nice_value = nice_fractional * 10**exponent if round_down or nice_fractional != 10 else 10**(exponent + 1)
if is_negative:
nice_value = -nice_value
return nice_value
def find_nice_values(min_val_raw, max_val, num_values = 4):
"""
Calculate 'num_values' evenly spaced "nice" values within the given range. Used for colorbar tickmarks.
"""
# Calculate rough spacing between values
min_val = adjust_to_nice_number(min_val_raw)
frac_val = (min_val - min_val_raw) / (max_val - min_val_raw)
if frac_val < 1 / num_values:
min_val = min_val_raw
raw_spacing = (max_val - min_val) / (num_values - 1)
# Calculate order of magnitude of the spacing
magnitude = np.floor(np.log10(raw_spacing))
nice_factors = np.array([1, 2, 5, 10])
normalized_spacing = raw_spacing / (10**magnitude)
closest_factor = nice_factors[np.argmin(np.abs(nice_factors - normalized_spacing))]
nice_spacing = closest_factor * (10**magnitude)
nice_values = min_val + nice_spacing * np.arange(num_values)
# Adjust if last value exceeds max_val
if nice_values[-1] < max_val - nice_spacing:
last_val = nice_values[-1]
nice_values = np.append(nice_values, [last_val + nice_spacing])
return [val for val in nice_values if min_val <= val <= max_val]
def format_tick_label(val):
"""
Format w/ scientific notation for large/small values.
"""
if val != 0:
magnitude = np.abs(np.floor(np.log10(np.abs(val))))
if magnitude > 2:
return f'{val:.1e}'
elif magnitude > 1:
return f'{val:.0f}'
elif magnitude > 0:
return f'{val:.1f}'
else:
return f'{val:.2f}'
else:
return f'{val}'
def plot_simple(system, rho, fontscale = 1):
# Major axis of outer boundary
b2 = system.b2
# Get x, y grids from 'PDESystem' object
x, y = system.get_xy_grids()
# wrap around values for continuity
rho = np.append(rho, rho[:, 0:1], axis = 1)
# Color bar limits
vmin = np.nanmin(rho)
vmax = np.nanmax(rho)
fig = plt.figure(figsize = (5, 5))
ax = plt.gca()
im = ax.contourf(x, y, rho, levels = np.linspace(vmin, vmax, 100), cmap = get_cmap('hsv'))
ax.set_title('rho(x,y)', fontsize = fontscale * 16)
for label in ax.get_xticklabels() + ax.get_yticklabels():
label.set_fontsize(fontscale * 12)
ax.set_aspect(1.0)
fac = 1.05
ax.set_xlim([-fac * b2, fac * b2])
ax.set_ylim([-fac * b2, fac * b2])
cbar = fig.colorbar(im, shrink = 0.8)
# Set colorbar ticks and labels to "nice" values
nice_values = find_nice_values(vmin, vmax, num_values = 5)
cbar.set_ticks(nice_values)
cbar.ax.yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: format_tick_label(x)))
return fig
def evaluate_2d_expression(expr_str, xvals, yvals):
x, y = sympy.symbols('s t')
expr = sympy.sympify(expr_str)
f = sympy.lambdify((x, y), expr, modules = ['numpy'])
result = f(xvals, yvals)
if isinstance(result, (int, float)):
return result * np.ones(xvals.shape)
return f(xvals, yvals)
'''
# Currently unused in gradio interface
def direct_solution(ell, a2, eccentricity, ibc_str, obc_str, max_krylov_dim, max_iterations):
# Direct solution
start = timeit.default_timer()
pde_config = {}
for key in ['nx1', 'nx2', 'nx3']:
pde_config[key] = stnn_config[key]
pde_config['ell'] = ell
pde_config['eccentricity'] = eccentricity
pde_config['a2'] = a2
system = PDESystem(pde_config)
try:
ibf_data = evaluate_2d_expression(ibc_str, system.x2_ib, system.x2_ib - system.x3_ib)[system.ib_slice]
except:
raise ValueError(f"Failed to parse the expression `{ibc_str}` for the boundary condition @ the inner boundary.")
try:
obf_data = evaluate_2d_expression(obc_str, system.x2_ob, system.x2_ob - system.x3_ob)[system.ob_slice]
except:
raise ValueError(f"Failed to parse the expression `{obc_str}` for the boundary condition @ the outer boundary.")
if np.any(np.isnan(ibf_data)):
raise ValueError(f"The expression `{ibc_str}` evaluates to nan at one or more grid points.")
if np.any(np.isnan(obf_data)):
raise ValueError(f"The expression `{obc_str}` evaluates to nan at one or more grid points.")
ibf_data, obf_data, b = system.convert_boundary_data(ibf_data, obf_data)
L_xp = csr_matrix(system.L) # Sparse matrix representation of the PDE operator
nx1, nx2, nx3 = system.params['nx1'], system.params['nx2'], system.params['nx3']
b_xp = asarray(b.reshape((nx1 * nx2 * nx3,))) # r.h.s. vector
def callback(res):
print(f'GMRES residual: {res}')
f_xp, info = spx.linalg.gmres(L_xp, b_xp, maxiter=max_iterations, tol=1e-7, restart=max_krylov_dim, callback=callback)
residual = (xp.linalg.norm(b_xp - L_xp @ f_xp) / xp.linalg.norm(b_xp))
if info > 0:
warnings.simplefilter('always')
warnings.warn(f'GMRES solver did not converge. Number of iterations: {info}; residual: {residual}', RuntimeWarning)
f = asnumpy(f_xp)
rho_direct = np.sum(f.reshape((nx1, nx2, nx3)), axis=-1)
direct_time = timeit.default_timer() - start
print(f'Done with direct solution. Time: {direct_time} seconds.')
fig = plot_simple(system, rho_direct)
return fig, info
'''
def predict_pde_solution(ell, a2, eccentricity, ibc_str, obc_str):
if a2 <= eccentricity:
raise ValueError(f'Outer minor axis must be greater than the eccentricity (here, {eccentricity}).')
pde_config = {}
for key in ['nx1', 'nx2', 'nx3']:
pde_config[key] = stnn_config[key]
pde_config['ell'] = ell
pde_config['eccentricity'] = eccentricity
pde_config['a2'] = a2
system = PDESystem(pde_config)
try:
ibf_data = evaluate_2d_expression(ibc_str, system.x2_ib, system.x2_ib - system.x3_ib)[system.ib_slice]
except:
raise ValueError(f"Failed to parse the expression `{ibc_str}` for the boundary condition @ the inner boundary.")
try:
obf_data = evaluate_2d_expression(obc_str, system.x2_ob, system.x2_ob - system.x3_ob)[system.ob_slice]
except:
raise ValueError(f"Failed to parse the expression `{obc_str}` for the boundary condition @ the outer boundary.")
if np.any(np.isnan(ibf_data)):
raise ValueError(f"The expression `{ibc_str}` evaluates to NaN at one or more grid points.")
if np.any(np.isnan(obf_data)):
raise ValueError(f"The expression `{obc_str}` evaluates to NaN at one or more grid points.")
# Permute and reshape boundary data to the format expected by the STNN model
ibf_data, obf_data, b = system.convert_boundary_data(ibf_data, obf_data)
'''
# Currently unused in gradio interface
ibf_data, obf_data, b, _ = system.generate_random_bc(func_gen_id)
'''
# Load some relevant quantities from the config dictionaries
ell_min, ell_max = stnn_config['ell_min'], stnn_config['ell_max']
a2_min, a2_max = stnn_config['a2_min'], stnn_config['a2_max']
nx1, nx2, nx3 = pde_config['nx1'], pde_config['nx2'], pde_config['nx3']
# Combine boundary data in single vector
bf = np.zeros((1, 2 * nx2, nx3 // 2))
bf[:, :nx2, :] = ibf_data[np.newaxis, ...]
bf[:, nx2:, :] = obf_data[np.newaxis, ...]
# Normalize and combine parameters
params = np.zeros((1, 3))
params[0, 0] = (a2 - a2_min) / (a2_max - a2_min)
params[0, 1] = (ell - ell_min) / (ell_max - ell_min)
params[0, 2] = eccentricity
rho = model.predict([params, bf])
fig = plot_simple(system, rho[0, ...])
return fig
with open('T5_config.json', 'r', encoding = 'utf-8') as json_file:
stnn_config = json.load(json_file)
model = stnn.build_stnn(stnn_config)
model.load_weights('T5_weights.h5')
with gr.Blocks() as demo:
gr.Markdown("# Stacked Tensorial Neural Network (STNN) demo"
"\nThis demo uses the model architecture from [arXiv:2312.14979](https://arxiv.org/abs/2312.14979) "
"to solve a parametric PDE problem on an elliptical annular domain. "
"See the paper for a detailed description of the problem and its applications."
"<br/>The [GitHub repo](https://github.com/caleb399/stacked_tensorial_nn) contains additional examples, "
"including intructions for solving the PDE using a conventional iterative method (GMRES). "
"Due to the long runtime of solving the PDE in this way, it is not included in the demo.")
gr.Markdown("<br/>The PDE is "
"$\ell \\left( \\boldsymbol{\hat{u}} \cdot \\nabla \\right) f(\\boldsymbol{r}, w) = \partial_{ww} f(\\boldsymbol{r}, w)$, "
"where $\ell$ is a parameter and $\\boldsymbol{\hat{u}} = (\\cos w, \\sin w)$. "
"Here, $\\boldsymbol{r}$ is the 2D position vector, and $w$ is an angular coordinate unrelated to "
"the spatial domain. The model predicts the density !\\rho(\\boldsymbol{r}) = \int f(\\boldsymbol{r}, w) dw! "
"on elliptical annular domains parameterized as shown below. ",
latex_delimiters = [{"left": "$", "right": "$", "display": False}, {"left": "!", "right": "!", "display": True}])
with gr.Row():
with gr.Column():
gr.Markdown(
"## PDE Parameters \n The model was trained on solutions of the PDE with $\ell$ between 0.01 and 100, $a$ between 2 and 20, "
"and $ecc$ between 0 and 0.8.", latex_delimiters = [{"left": "$", "right": "$", "display": False},
{"left": "!", "right": "!", "display": True}])
ell_input = gr.Number(label = "ell (must be > 0)", value = 1.0)
eccentricity_input = gr.Number(
label = "ecc: eccentricity of the inner boundary (must be >= 0 and <= 0.999)",
value = 0.5, minimum = 0.0, maximum = 0.999)
a2_input = gr.Number(label = "a: Minor axis of outer boundary (must be > eccentricity)", value = 2.0)
gr.Markdown(
"## Boundary Conditions \n $(s, t)$ are angular coordinates parameterizing the PDE domain, "
"related to $\\boldsymbol{r}$ and $w$ by a coordinate transformation. "
"Specifically, $s$ is the polar elliptical coordinate along the boundary (inner or outer), with values "
"between $-\pi$ and $\pi$, while $t = s - w$. Boundary conditions are generated from grid points "
"distributed uniformly over the allowable values of $s$ and $t$."
"<br/><br/>For the PDE problem to be well-posed, boundary data should only be specified where "
"$\\boldsymbol{\hat{u}} \cdot \\boldsymbol{\hat{n}} > 0$, where $\\boldsymbol{\hat{n}}$ is the "
"inward-pointing unit normal vector. This requirement constrains the allowable values of $t$."
" and is automatically enforced when building boundary conditions from the user-specified expressions below.",
latex_delimiters = [{"left": "$", "right": "$", "display": False}])
inner_boundary = gr.Textbox(label = "Inner boundary condition", value = "0.5 * (1 + sign(cos(s)))")
outer_boundary = gr.Textbox(label = "Outer boundary condition", value = "1 + 0.1 * cos(4*s)")
submit_button = gr.Button("Submit")
with gr.Column():
gr.Markdown("## Predicted Solution")
predicted_output_plot = gr.Plot()
submit_button.click(
fn = predict_pde_solution,
inputs = [ell_input, a2_input, eccentricity_input, inner_boundary, outer_boundary],
outputs = [predicted_output_plot]
)
demo.launch()
|