Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,527 Bytes
def2fd8 c62efeb def2fd8 c62efeb def2fd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
# Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Literal
import torch
from einops import rearrange
from PIL import ExifTags, Image
import torchvision.transforms.functional as TVF
from uno.flux.modules.layers import (
DoubleStreamBlockLoraProcessor,
DoubleStreamBlockProcessor,
SingleStreamBlockLoraProcessor,
SingleStreamBlockProcessor,
)
from uno.flux.sampling import denoise, get_noise, get_schedule, prepare_multi_ip, unpack
from uno.flux.util import (
get_lora_rank,
load_ae,
load_checkpoint,
load_clip,
load_flow_model,
load_flow_model_only_lora,
load_flow_model_quintized,
load_t5,
)
def find_nearest_scale(image_h, image_w, predefined_scales):
"""
根据图片的高度和宽度,找到最近的预定义尺度。
:param image_h: 图片的高度
:param image_w: 图片的宽度
:param predefined_scales: 预定义尺度列表 [(h1, w1), (h2, w2), ...]
:return: 最近的预定义尺度 (h, w)
"""
# 计算输入图片的长宽比
image_ratio = image_h / image_w
# 初始化变量以存储最小差异和最近的尺度
min_diff = float('inf')
nearest_scale = None
# 遍历所有预定义尺度,找到与输入图片长宽比最接近的尺度
for scale_h, scale_w in predefined_scales:
predefined_ratio = scale_h / scale_w
diff = abs(predefined_ratio - image_ratio)
if diff < min_diff:
min_diff = diff
nearest_scale = (scale_h, scale_w)
return nearest_scale
def preprocess_ref(raw_image: Image.Image, long_size: int = 512):
# 获取原始图像的宽度和高度
image_w, image_h = raw_image.size
# 计算长边和短边
if image_w >= image_h:
new_w = long_size
new_h = int((long_size / image_w) * image_h)
else:
new_h = long_size
new_w = int((long_size / image_h) * image_w)
# 按新的宽高进行等比例缩放
raw_image = raw_image.resize((new_w, new_h), resample=Image.LANCZOS)
target_w = new_w // 16 * 16
target_h = new_h // 16 * 16
# 计算裁剪的起始坐标以实现中心裁剪
left = (new_w - target_w) // 2
top = (new_h - target_h) // 2
right = left + target_w
bottom = top + target_h
# 进行中心裁剪
raw_image = raw_image.crop((left, top, right, bottom))
# 转换为 RGB 模式
raw_image = raw_image.convert("RGB")
return raw_image
class UNOPipeline:
def __init__(
self,
model_type: str,
device: torch.device,
offload: bool = False,
only_lora: bool = False,
lora_rank: int = 16
):
self.device = device
self.offload = offload
self.model_type = model_type
self.clip = load_clip(self.device)
self.t5 = load_t5(self.device, max_length=512)
self.ae = load_ae(model_type, device="cpu" if offload else self.device)
if "fp8" in model_type:
self.model = load_flow_model_quintized(model_type, device="cpu" if offload else self.device)
elif only_lora:
self.model = load_flow_model_only_lora(
model_type, device="cpu" if offload else self.device, lora_rank=lora_rank
)
else:
self.model = load_flow_model(model_type, device="cpu" if offload else self.device)
def load_ckpt(self, ckpt_path):
if ckpt_path is not None:
from safetensors.torch import load_file as load_sft
print("Loading checkpoint to replace old keys")
# load_sft doesn't support torch.device
if ckpt_path.endswith('safetensors'):
sd = load_sft(ckpt_path, device='cpu')
missing, unexpected = self.model.load_state_dict(sd, strict=False, assign=True)
else:
dit_state = torch.load(ckpt_path, map_location='cpu')
sd = {}
for k in dit_state.keys():
sd[k.replace('module.','')] = dit_state[k]
missing, unexpected = self.model.load_state_dict(sd, strict=False, assign=True)
self.model.to(str(self.device))
print(f"missing keys: {missing}\n\n\n\n\nunexpected keys: {unexpected}")
def set_lora(self, local_path: str = None, repo_id: str = None,
name: str = None, lora_weight: int = 0.7):
checkpoint = load_checkpoint(local_path, repo_id, name)
self.update_model_with_lora(checkpoint, lora_weight)
def set_lora_from_collection(self, lora_type: str = "realism", lora_weight: int = 0.7):
checkpoint = load_checkpoint(
None, self.hf_lora_collection, self.lora_types_to_names[lora_type]
)
self.update_model_with_lora(checkpoint, lora_weight)
def update_model_with_lora(self, checkpoint, lora_weight):
rank = get_lora_rank(checkpoint)
lora_attn_procs = {}
for name, _ in self.model.attn_processors.items():
lora_state_dict = {}
for k in checkpoint.keys():
if name in k:
lora_state_dict[k[len(name) + 1:]] = checkpoint[k] * lora_weight
if len(lora_state_dict):
if name.startswith("single_blocks"):
lora_attn_procs[name] = SingleStreamBlockLoraProcessor(dim=3072, rank=rank)
else:
lora_attn_procs[name] = DoubleStreamBlockLoraProcessor(dim=3072, rank=rank)
lora_attn_procs[name].load_state_dict(lora_state_dict)
lora_attn_procs[name].to(self.device)
else:
if name.startswith("single_blocks"):
lora_attn_procs[name] = SingleStreamBlockProcessor()
else:
lora_attn_procs[name] = DoubleStreamBlockProcessor()
self.model.set_attn_processor(lora_attn_procs)
def __call__(
self,
prompt: str,
width: int = 512,
height: int = 512,
guidance: float = 4,
num_steps: int = 50,
seed: int = 123456789,
**kwargs
):
width = 16 * (width // 16)
height = 16 * (height // 16)
return self.forward(
prompt,
width,
height,
guidance,
num_steps,
seed,
**kwargs
)
@torch.inference_mode()
def gradio_generate(
self,
prompt: str,
width: int,
height: int,
guidance: float,
num_steps: int,
seed: int,
image_prompt1: Image.Image,
image_prompt2: Image.Image,
image_prompt3: Image.Image,
image_prompt4: Image.Image,
):
ref_imgs = [image_prompt1, image_prompt2, image_prompt3, image_prompt4]
ref_imgs = [img for img in ref_imgs if isinstance(img, Image.Image)]
ref_long_side = 512 if len(ref_imgs) <= 1 else 320
ref_imgs = [preprocess_ref(img, ref_long_side) for img in ref_imgs]
seed = seed if seed != -1 else torch.randint(0, 10 ** 8, (1,)).item()
img = self(prompt=prompt, width=width, height=height, guidance=guidance,
num_steps=num_steps, seed=seed, ref_imgs=ref_imgs)
filename = f"output/gradio/{seed}_{prompt[:20]}.png"
os.makedirs(os.path.dirname(filename), exist_ok=True)
exif_data = Image.Exif()
exif_data[ExifTags.Base.Make] = "UNO"
exif_data[ExifTags.Base.Model] = self.model_type
info = f"{prompt=}, {seed=}, {width=}, {height=}, {guidance=}, {num_steps=}"
exif_data[ExifTags.Base.ImageDescription] = info
img.save(filename, format="png", exif=exif_data)
return img, filename
@torch.inference_mode
def forward(
self,
prompt: str,
width: int,
height: int,
guidance: float,
num_steps: int,
seed: int,
ref_imgs: list[Image.Image] | None = None,
pe: Literal['d', 'h', 'w', 'o'] = 'd',
):
x = get_noise(
1, height, width, device=self.device,
dtype=torch.bfloat16, seed=seed
)
timesteps = get_schedule(
num_steps,
(width // 8) * (height // 8) // (16 * 16),
shift=True,
)
if self.offload:
self.ae.encoder = self.ae.encoder.to(self.device)
x_1_refs = [
self.ae.encode(
(TVF.to_tensor(ref_img) * 2.0 - 1.0)
.unsqueeze(0).to(self.device, torch.float32)
).to(torch.bfloat16)
for ref_img in ref_imgs
]
if self.offload:
self.ae.encoder = self.offload_model_to_cpu(self.ae.encoder)
self.t5, self.clip = self.t5.to(self.device), self.clip.to(self.device)
inp_cond = prepare_multi_ip(
t5=self.t5, clip=self.clip,
img=x,
prompt=prompt, ref_imgs=x_1_refs, pe=pe
)
if self.offload:
self.offload_model_to_cpu(self.t5, self.clip)
self.model = self.model.to(self.device)
x = denoise(
self.model,
**inp_cond,
timesteps=timesteps,
guidance=guidance,
)
if self.offload:
self.offload_model_to_cpu(self.model)
self.ae.decoder.to(x.device)
x = unpack(x.float(), height, width)
x = self.ae.decode(x)
self.offload_model_to_cpu(self.ae.decoder)
x1 = x.clamp(-1, 1)
x1 = rearrange(x1[-1], "c h w -> h w c")
output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy())
return output_img
def offload_model_to_cpu(self, *models):
if not self.offload: return
for model in models:
model.cpu()
torch.cuda.empty_cache()
|