# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates # Copyright 2023 TSAIL Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver from typing import List, Optional, Union import numpy as np import torch from .base import * class DPMSolverMultistepScheduler(Scheduler): def __init__( self, # Generic scheduler settings num_inference_timesteps: int, betas: torch.Tensor, num_train_timesteps: int = 1000, inference_timesteps: Union[str, List[str]] = "trailing", set_alpha_to_one: bool = True, device: Optional[torch.device] = None, dtype: torch.dtype = torch.float32, # DPM scheduler settings solver_order: int = 2, algorithm_type: str = "dpmsolver++", solver_type: str = "midpoint", lower_order_final: bool = True, use_karras_sigmas: bool = False, ): super().__init__( num_train_timesteps=num_train_timesteps, num_inference_timesteps=num_inference_timesteps, betas=betas, inference_timesteps=inference_timesteps, set_alpha_to_one=set_alpha_to_one, device=device, dtype=dtype, ) self.solver_order = solver_order self.solver_type = solver_type self.lower_order_final = lower_order_final self.algorithm_type = algorithm_type # Currently we only support VP-type noise schedule self.alpha_t = torch.sqrt(self.alphas_cumprod) self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) sigmas = torch.sqrt((1 - self.alphas_cumprod) / self.alphas_cumprod) if use_karras_sigmas: log_sigmas = torch.log(sigmas) sigmas = self._convert_to_karras( in_sigmas=sigmas, num_inference_timesteps=num_inference_timesteps) timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round() timesteps = np.flip(timesteps).copy().astype(np.int64) self.timesteps = torch.from_numpy(timesteps).to(device) sigmas = torch.from_numpy(sigmas).to(device) self.sigmas = sigmas # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 # settings for DPM-Solver if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++", "deis"]: raise NotImplementedError( f"{algorithm_type} does is not implemented for {self.__class__}") if solver_type not in ["midpoint", "heun", "logrho", "bh1", "bh2"]: raise NotImplementedError( f"{solver_type} does is not implemented for {self.__class__}") # setable values self.reset() def reset(self): self.model_outputs = [None] * self.solver_order self.lower_order_nums = 0 def _sigma_to_t(self, sigma, log_sigmas): # get log sigma log_sigma = np.log(sigma) # get distribution dists = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range low_idx = np.cumsum((dists >= 0), axis=0).argmax( axis=0).clip(max=log_sigmas.shape[0] - 2) high_idx = low_idx + 1 low = log_sigmas[low_idx] high = log_sigmas[high_idx] # interpolate sigmas w = (low - log_sigma) / (low - high) w = np.clip(w, 0, 1) # transform interpolation to time range t = (1 - w) * low_idx + w * high_idx t = t.reshape(sigma.shape) return t # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_timesteps) -> torch.FloatTensor: """Constructs the noise schedule of Karras et al. (2022).""" sigma_min: float = in_sigmas[-1].item() sigma_max: float = in_sigmas[0].item() rho = 7.0 # 7.0 is the value used in the paper ramp = np.linspace(0, 1, num_inference_timesteps) min_inv_rho = sigma_min ** (1 / rho) max_inv_rho = sigma_max ** (1 / rho) sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas def dpm_solver_first_order_update( self, model_output: torch.FloatTensor, timestep: int, prev_timestep: int, sample: torch.FloatTensor, noise: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: """ One step for the first-order DPM-Solver (equivalent to DDIM). See https://arxiv.org/abs/2206.00927 for the detailed derivation. Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. prev_timestep (`int`): previous discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. Returns: `torch.FloatTensor`: the sample tensor at the previous timestep. """ lambda_t, lambda_s = self.lambda_t[prev_timestep], self.lambda_t[timestep] alpha_t, alpha_s = self.alpha_t[prev_timestep], self.alpha_t[timestep] sigma_t, sigma_s = self.sigma_t[prev_timestep], self.sigma_t[timestep] h = lambda_t - lambda_s if self.algorithm_type == "dpmsolver++": x_t = (sigma_t / sigma_s) * sample - \ (alpha_t * (torch.exp(-h) - 1.0)) * model_output elif self.algorithm_type == "dpmsolver": x_t = (alpha_t / alpha_s) * sample - \ (sigma_t * (torch.exp(h) - 1.0)) * model_output elif self.algorithm_type == "sde-dpmsolver++": assert noise is not None x_t = ( (sigma_t / sigma_s * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise ) elif self.algorithm_type == "sde-dpmsolver": assert noise is not None x_t = ( (alpha_t / alpha_s) * sample - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * model_output + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise ) return x_t def multistep_dpm_solver_second_order_update( self, model_output_list: List[torch.FloatTensor], timestep_list: List[int], prev_timestep: int, sample: torch.FloatTensor, noise: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: """ One step for the second-order multistep DPM-Solver. Args: model_output_list (`List[torch.FloatTensor]`): direct outputs from learned diffusion model at current and latter timesteps. timestep (`int`): current and latter discrete timestep in the diffusion chain. prev_timestep (`int`): previous discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. Returns: `torch.FloatTensor`: the sample tensor at the previous timestep. """ t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2] m0, m1 = model_output_list[-1], model_output_list[-2] lambda_t, lambda_s0, lambda_s1 = self.lambda_t[t], self.lambda_t[s0], self.lambda_t[s1] alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 r0 = h_0 / h D0, D1 = m0, (1.0 / r0) * (m0 - m1) if self.algorithm_type == "dpmsolver++": # See https://arxiv.org/abs/2211.01095 for detailed derivations if self.solver_type == "midpoint": x_t = ( (sigma_t / sigma_s0) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * D0 - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1 ) elif self.solver_type == "heun": x_t = ( (sigma_t / sigma_s0) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * D0 + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 ) elif self.algorithm_type == "dpmsolver": # See https://arxiv.org/abs/2206.00927 for detailed derivations if self.solver_type == "midpoint": x_t = ( (alpha_t / alpha_s0) * sample - (sigma_t * (torch.exp(h) - 1.0)) * D0 - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1 ) elif self.solver_type == "heun": x_t = ( (alpha_t / alpha_s0) * sample - (sigma_t * (torch.exp(h) - 1.0)) * D0 - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 ) elif self.algorithm_type == "sde-dpmsolver++": assert noise is not None if self.solver_type == "midpoint": x_t = ( (sigma_t / sigma_s0 * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise ) elif self.solver_type == "heun": x_t = ( (sigma_t / sigma_s0 * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1 + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise ) elif self.algorithm_type == "sde-dpmsolver": assert noise is not None if self.solver_type == "midpoint": x_t = ( (alpha_t / alpha_s0) * sample - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0 - (sigma_t * (torch.exp(h) - 1.0)) * D1 + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise ) elif self.solver_type == "heun": x_t = ( (alpha_t / alpha_s0) * sample - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0 - 2.0 * (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise ) return x_t def multistep_dpm_solver_third_order_update( self, model_output_list: List[torch.FloatTensor], timestep_list: List[int], prev_timestep: int, sample: torch.FloatTensor, ) -> torch.FloatTensor: """ One step for the third-order multistep DPM-Solver. Args: model_output_list (`List[torch.FloatTensor]`): direct outputs from learned diffusion model at current and latter timesteps. timestep (`int`): current and latter discrete timestep in the diffusion chain. prev_timestep (`int`): previous discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. Returns: `torch.FloatTensor`: the sample tensor at the previous timestep. """ t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3] m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3] lambda_t, lambda_s0, lambda_s1, lambda_s2 = ( self.lambda_t[t], self.lambda_t[s0], self.lambda_t[s1], self.lambda_t[s2], ) alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2 r0, r1 = h_0 / h, h_1 / h D0 = m0 D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2) D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1) D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1) if self.algorithm_type == "dpmsolver++": # See https://arxiv.org/abs/2206.00927 for detailed derivations x_t = ( (sigma_t / sigma_s0) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * D0 + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 - (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2 ) elif self.algorithm_type == "dpmsolver": # See https://arxiv.org/abs/2206.00927 for detailed derivations x_t = ( (alpha_t / alpha_s0) * sample - (sigma_t * (torch.exp(h) - 1.0)) * D0 - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 - (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2 ) return x_t def step( self, model_output: torch.FloatTensor, model_output_type: str, timestep: int, sample: torch.FloatTensor, ) -> SchedulerStepOutput: """ Step function propagating the sample with the multistep DPM-Solver. Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than SchedulerOutput class Returns: [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if self.num_inference_timesteps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) step_index = (self.timesteps == timestep).nonzero() if len(step_index) == 0: step_index = len(self.timesteps) - 1 else: step_index = step_index.item() prev_timestep = 0 if step_index == len( self.timesteps) - 1 else self.timesteps[step_index + 1] lower_order_final = ( (step_index == len(self.timesteps) - 1) and self.lower_order_final and len(self.timesteps) < 15 ) lower_order_second = ( (step_index == len(self.timesteps) - 2) and self.lower_order_final and len(self.timesteps) < 15 ) model_output_convert = self.convert_output( model_output, model_output_type=model_output_type, sample=sample, timesteps=timestep) # DPM-Solver++ needs to solve an integral of the data prediction model. if self.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]: model_output = model_output_convert.pred_original_sample # DPM-Solver needs to solve an integral of the noise prediction model. elif self.algorithm_type in ["dpmsolver", "sde-dpmsolver"]: model_output = model_output_convert.pred_epsilon for i in range(self.solver_order - 1): self.model_outputs[i] = self.model_outputs[i + 1] self.model_outputs[-1] = model_output if self.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]: noise = torch.randn_like( model_output, device=model_output.device, dtype=model_output.dtype) else: noise = None if self.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final: prev_sample = self.dpm_solver_first_order_update( model_output, timestep, prev_timestep, sample, noise=noise ) elif self.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second: timestep_list = [self.timesteps[step_index - 1], timestep] prev_sample = self.multistep_dpm_solver_second_order_update( self.model_outputs, timestep_list, prev_timestep, sample, noise=noise ) else: timestep_list = [self.timesteps[step_index - 2], self.timesteps[step_index - 1], timestep] prev_sample = self.multistep_dpm_solver_third_order_update( self.model_outputs, timestep_list, prev_timestep, sample ) if self.lower_order_nums < self.solver_order: self.lower_order_nums += 1 return SchedulerStepOutput(prev_sample=prev_sample, pred_original_sample=model_output_convert.pred_original_sample)