Spaces:
Runtime error
Runtime error
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from typing import List | |
import torch | |
def get_betas(name: str, num_steps: int = 1000, shift_snr: float = 1, terminal_pure_noise: bool = False): | |
# Get betas | |
max_beta = 1 if terminal_pure_noise else 0.999 | |
if name == "squared_linear": | |
betas = torch.linspace(0.00085**0.5, 0.012**0.5, num_steps) ** 2 | |
elif name == "cosine": | |
betas = get_cosine_betas(num_steps, max_beta=max_beta) | |
elif name == "alphas_cumprod_linear": | |
betas = get_alphas_cumprod_linear_betas(num_steps, max_beta=max_beta) | |
elif name == "sigmoid": | |
betas = get_sigmoid_betas(num_steps, max_beta=max_beta, square=True, slop=0.7) | |
else: | |
raise NotImplementedError | |
# Shift snr | |
betas = shift_betas_by_snr_factor(betas, shift_snr) | |
# Ensure terminal pure noise | |
# Only non-cosine schedule uses rescale, cosine schedule can directly set max_beta=1 to ensure temrinal pure noise. | |
if name == "squared_linear" and terminal_pure_noise: | |
betas = rescale_betas_to_ensure_terminal_pure_noise(betas) | |
return betas | |
def validate_betas(betas: List[float]) -> bool: | |
""" | |
Validate betas is monotonic and within 0 to 1 range, i.e. 0 < beta_{t-1} < beta_{t} <= 1 | |
Args: | |
betas (List[float]): betas | |
Returns: | |
bool: True if betas is correct | |
""" | |
return all(b1 < b2 for b1, b2 in zip(betas, betas[1:])) and betas[0] > 0 and betas[-1] <= 1 | |
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar_fn, max_beta=0.999): | |
betas = [] | |
for i in range(num_diffusion_timesteps): | |
t1 = i / num_diffusion_timesteps | |
t2 = (i + 1) / num_diffusion_timesteps | |
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) | |
if not validate_betas(betas): | |
import logging | |
logging.warning("No feasible betas for given alpha bar") | |
return torch.tensor(betas, dtype=torch.float32) | |
def get_cosine_betas(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor: | |
def alpha_bar_fn(time_step): | |
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 | |
return betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar_fn, max_beta) | |
def get_sigmoid_betas(num_diffusion_timesteps, max_beta, square=False, slop=1): | |
def alpha_bar_fn(t): | |
def sigmoid(x): | |
return 1 / (1 + math.exp(-x * slop)) | |
s = 6 # (-6, 6) from geodiff | |
vb = sigmoid(-s) | |
ve = sigmoid(s) | |
return ((sigmoid(s - t * 2 * s) - vb) / (ve - vb))**(1 if not square else 2) | |
return betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar_fn, max_beta) | |
def get_alphas_cumprod_linear_betas(num_diffusion_timesteps, max_beta): | |
def alpha_bar_fn(t): | |
return 1 - t | |
return betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar_fn, max_beta=max_beta) | |
def shift_betas_by_snr_factor(betas: torch.Tensor, factor: float) -> torch.Tensor: | |
if factor == 1.0: | |
return betas | |
# Convert betas to snr | |
alphas = 1 - betas | |
alphas_cumprod = alphas.cumprod(dim=0) | |
snr = alphas_cumprod / (1 - alphas_cumprod) | |
# Shift snr | |
snr *= factor | |
# Convert snr to betas | |
alphas_cumprod = snr / (1 + snr) | |
alphas = torch.cat( | |
[alphas_cumprod[0:1], alphas_cumprod[1:] / alphas_cumprod[:-1]]) | |
betas = 1 - alphas | |
return betas | |
def rescale_betas_to_ensure_terminal_pure_noise(betas: torch.Tensor) -> torch.Tensor: | |
# Convert betas to alphas_cumprod_sqrt | |
alphas = 1 - betas | |
alphas_cumprod = alphas.cumprod(0) | |
alphas_cumprod_sqrt = alphas_cumprod.sqrt() | |
# Rescale alphas_cumprod_sqrt such that alphas_cumprod_sqrt[0] remains unchanged but alphas_cumprod_sqrt[-1] = 0 | |
alphas_cumprod_sqrt = (alphas_cumprod_sqrt - alphas_cumprod_sqrt[-1]) / ( | |
alphas_cumprod_sqrt[0] - alphas_cumprod_sqrt[-1]) * alphas_cumprod_sqrt[0] | |
# Convert alphas_cumprod_sqrt to betas | |
alphas_cumprod = alphas_cumprod_sqrt ** 2 | |
alphas = torch.cat( | |
[alphas_cumprod[0:1], alphas_cumprod[1:] / alphas_cumprod[:-1]]) | |
betas = 1 - alphas | |
return betas | |