File size: 17,725 Bytes
7cc4b41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccb41c7
 
7cc4b41
 
 
 
 
 
 
 
 
 
 
 
 
 
3765927
7cc4b41
 
 
 
 
 
 
 
 
 
 
 
ccb41c7
7cc4b41
0b318d9
286a43b
7cc4b41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
308e4c0
7cc4b41
308e4c0
 
 
 
 
 
 
 
7cc4b41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import json
import torch
import torchvision
from torchvision.utils import make_grid
from torchvision.transforms.functional import to_pil_image
from PIL import Image

from models.text import TextModel
from models.vae import AutoencoderKL
from models.unet_2d_condition_custom import UNet2DConditionModel as UNet2DConditionModelDiffusers

from schedulers.ddim import DDIMScheduler
from schedulers.dpm_s import DPMSolverSingleStepScheduler
from schedulers.utils import get_betas

from inference.inference_utils import find_phrase_positions_in_text, classifier_free_guidance_image_prompt_cascade
from inference.mask_generation import mask_generation
from utils import instantiate_from_config

from tqdm import tqdm
from einops import rearrange

class RealCustomInferencePipeline:
    def __init__(
        self,
        unet_config,
        unet_checkpoint,
        realcustom_checkpoint,
        vae_config="ckpts/sdxl/vae/sdxl.json",
        vae_checkpoint="ckpts/sdxl/vae/sdxl-vae.pth",
        model_type="bf16", 
        device="cpu",
    ):
        if model_type == "bf16":
            self.torch_dtype = torch.bfloat16
        else:
            self.torch_dtype = torch.float32

        if not os.path.exists("ckpts/"):
            from huggingface_hub import snapshot_download
            print("Downloading RealCustom ...")
            snapshot_download(
                repo_id="bytedance-research/RealCustom",
                repo_type="model",
                local_dir="./",  # 指定本地目录
                allow_patterns="ckpts/**",  # 只下载 ckpts 文件夹内容
                local_dir_use_symlinks=False,  # 直接存储文件而非符号链接
                etag_timeout=100       # 元数据检查超时时间
            )
        
        self.device = device
        self.unet_checkpoint = unet_checkpoint
        self.realcustom_checkpoint = realcustom_checkpoint
        self._load_unet_checkpoint(unet_config, unet_checkpoint, realcustom_checkpoint)
        self._load_vae_checkpoint(vae_config, vae_checkpoint)
        self._load_encoder_checkpoint()
        self._init_scheduler()
        self._load_negative_prompt()

    
    def _load_unet_checkpoint(self, unet_config, unet_checkpoint, realcustom_checkpoint):
        # Initialize unet model
        with open(unet_config) as unet_config_file:
            unet_config = json.load(unet_config_file)
        self.unet_prediction = "epsilon"

        # Settings for image encoder
        vision_model_config = unet_config.pop("vision_model_config", None)
        self.vision_model_config = vision_model_config.pop("vision_model_config", None)

        # self.unet_model = UNet2DConditionModelDiffusers(**unet_config)

        # self.unet_model.eval().to(self.device).to(self.torch_dtype)
        # self.unet_model.load_state_dict(torch.load(unet_checkpoint, map_location=self.device), strict=False)
        # self.unet_model.load_state_dict(torch.load(realcustom_checkpoint, map_location=self.device), strict=False)
        with torch.device("meta"):
            self.unet_model = UNet2DConditionModelDiffusers(**unet_config)
        self.unet_model.load_state_dict(torch.load(unet_checkpoint, map_location=self.device), strict=False, assign=True)
        self.unet_model.load_state_dict(torch.load(realcustom_checkpoint, map_location=self.device), strict=False, assign=True)
        self.unet_model.eval()
        print("loading unet model finished.")

    def _reload_unet_checkpoint(self, unet_checkpoint, realcustom_checkpoint):
        self.unet_model.load_state_dict(torch.load(unet_checkpoint, map_location=self.device), strict=False)
        self.unet_model.load_state_dict(torch.load(realcustom_checkpoint, map_location=self.device), strict=False)
        print("reloading unet model finished.")
    
    def _load_vae_checkpoint(self, vae_config, vae_checkpoint):
        # Initialize vae model
        with open(vae_config) as vae_config_file:
            vae_config = json.load(vae_config_file)
        self.latent_channels = vae_config["latent_channels"]
        self.vae_downsample_factor = 2 ** (len(vae_config["block_out_channels"]) - 1) # 2 ** 3 = 8

        vae_model = AutoencoderKL(**vae_config)
        vae_model.eval().to(self.device).to(self.torch_dtype)
        vae_model.load_state_dict(torch.load(vae_checkpoint, map_location=self.device))
        self.vae_decoder = torch.compile(lambda x: vae_model.decode(x / vae_model.scaling_factor).sample.clip(-1, 1), disable=True)
        self.vae_encoder = torch.compile(lambda x: vae_model.encode(x).latent_dist.mode().mul_(vae_model.scaling_factor), disable=True)

        print("loading vae finished.")
    
    def _load_encoder_checkpoint(self, ):
        # Initialize text encoder
        text_encoder_variant = ["ckpts/sdxl/clip-sdxl-1", "ckpts/sdxl/clip-sdxl-2"]
        text_encoder_mode = ["penultimate_nonorm"]
        self.text_model = TextModel(text_encoder_variant, text_encoder_mode)
        self.text_model.eval().to(self.device).to(self.torch_dtype)
        print("loading text model finished.")

        # Initialize image encoder
        self.vision_model = instantiate_from_config(self.vision_model_config)
        self.vision_model.eval().to(self.device).to(self.torch_dtype)
        print("loading image model finished.")
    
    def _init_scheduler(self, ):
        # Initialize ddim scheduler
        ddim_train_steps = 1000
        schedule_type = "squared_linear"
        scheduler_type = "dpm"
        schedule_shift_snr = 1
        self.sample_steps = 25
        ddim_betas = get_betas(name=schedule_type, num_steps=ddim_train_steps, shift_snr=schedule_shift_snr, terminal_pure_noise=False)
        scheduler_class = DPMSolverSingleStepScheduler if scheduler_type == 'dpm' else DDIMScheduler

        self.scheduler = scheduler_class(betas=ddim_betas, num_train_timesteps=ddim_train_steps, num_inference_timesteps=self.sample_steps, device=self.device)
        self.infer_timesteps = self.scheduler.timesteps
    
    def _load_negative_prompt(self, ):
        with open("prompts/validation_negative.txt") as f:
            self.negative_prompt = f.read().strip()
        self.text_negative_output = self.text_model(self.negative_prompt)
    
    def generation(
        self, 
        text, 
        image_pil, 
        target_phrase,

        height=1024,
        width=1024,
        guidance_scale=3.5,
        seed=1234,
        samples_per_prompt=4,

        mask_scope=0.25,

        new_unet_checkpoint="",          # in case you want to change
        new_realcustom_checkpoint="",    # in case you want to change
        mask_strategy=["min_max_per_channel"],
        mask_reused_step=12,
        return_each_image=False,
    ):
        
        if new_unet_checkpoint != "" and new_unet_checkpoint != self.unet_checkpoint:
            self.unet_checkpoint = new_unet_checkpoint
            self.unet_model.load_state_dict(torch.load(new_unet_checkpoint, map_location=self.device), strict=False)
            print("Reloading Unet {} finised.".format(new_unet_checkpoint))
        if new_realcustom_checkpoint != "" and new_realcustom_checkpoint != self.realcustom_checkpoint:
            self.realcustom_checkpoint = new_realcustom_checkpoint
            self.unet_model.load_state_dict(torch.load(new_realcustom_checkpoint, map_location=self.device), strict=False)
            print("Reloading RealCustom {} finised.".format(new_realcustom_checkpoint))

        samples_per_prompt = int(samples_per_prompt)
        image_metadata_validate = self._get_metadata(height, width, samples_per_prompt)
        if seed == -1:
            seed = torch.randint(0, 1000000, (1,)).item()
        seed = int(seed)

        with torch.no_grad(), torch.autocast(self.device, self.torch_dtype):
            target_token = self._find_phrase_positions_in_text(text, target_phrase)

            # Compute text embeddings
            text_positive_output = self.text_model(text)
            text_positive_embeddings = text_positive_output.embeddings.repeat_interleave(samples_per_prompt, dim=0)
            text_positive_pooled = text_positive_output.pooled[-1].repeat_interleave(samples_per_prompt, dim=0)
            if guidance_scale != 1:
                text_negative_embeddings = self.text_negative_output.embeddings.repeat_interleave(samples_per_prompt, dim=0)
                text_negative_pooled = self.text_negative_output.pooled[-1].repeat_interleave(samples_per_prompt, dim=0)

            # Compute image embeddings
            # positive_image = Image.open(image_path).convert("RGB")
            positive_image = image_pil
            positive_image = torchvision.transforms.ToTensor()(positive_image)

            positive_image = positive_image.unsqueeze(0).repeat_interleave(samples_per_prompt, dim=0)
            positive_image = torch.nn.functional.interpolate(
                positive_image, 
                size=(768, 768), 
                mode="bilinear", 
                align_corners=False
            )
            negative_image = torch.zeros_like(positive_image)
            positive_image = positive_image.to(self.device).to(self.torch_dtype)
            negative_image = negative_image.to(self.device).to(self.torch_dtype)

            positive_image_dict = {"image_ref": positive_image}
            positive_image_output = self.vision_model(positive_image_dict, device=self.device)

            negative_image_dict = {"image_ref": negative_image}
            negative_image_output = self.vision_model(negative_image_dict, device=self.device)

            # Initialize latent with input latent
            latent = torch.randn(
                size=[
                    samples_per_prompt,
                    self.latent_channels,
                    height // self.vae_downsample_factor,
                    width // self.vae_downsample_factor
                ],
                device=self.device,
                generator=torch.Generator(self.device).manual_seed(seed)).to(self.torch_dtype)
            target_h = (height // self.vae_downsample_factor) // 2
            target_w = (width // self.vae_downsample_factor) // 2

            text2image_crossmap_2d_all_timesteps_list = []
            current_step = 0
            pbar_text = text[:40]
            for timestep in tqdm(iterable=self.infer_timesteps, desc=f"[{pbar_text}]", dynamic_ncols=True):
                if current_step < mask_reused_step:
                    pred_cond, pred_cond_dict = self.unet_model(
                        sample=latent,
                        timestep=timestep,
                        encoder_hidden_states=text_positive_embeddings,
                        encoder_attention_mask=None,
                        added_cond_kwargs=dict(
                            text_embeds=text_positive_pooled,
                            time_ids=image_metadata_validate
                        ),
                        vision_input_dict=None,
                        vision_guided_mask=None,
                        return_as_origin=False,
                        return_text2image_mask=True,
                    )
                    crossmap_2d_avg = mask_generation(
                        crossmap_2d_list=pred_cond_dict["text2image_crossmap_2d"], selfmap_2d_list=pred_cond_dict.get("self_attention_map", []), 
                        target_token=target_token, mask_scope=mask_scope,
                        mask_target_h=target_h, mask_target_w=target_w, mask_mode=mask_strategy,
                    )
                else:
                    # using previous step's mask
                    crossmap_2d_avg = text2image_crossmap_2d_all_timesteps_list[-1].squeeze(1)
                if crossmap_2d_avg.dim() == 5: # Means that each layer uses a separate mask weight.
                    text2image_crossmap_2d_all_timesteps_list.append(crossmap_2d_avg.mean(dim=2).unsqueeze(1))
                else:
                    text2image_crossmap_2d_all_timesteps_list.append(crossmap_2d_avg.unsqueeze(1))

                pred_cond, pred_cond_dict = self.unet_model(
                    sample=latent,
                    timestep=timestep,
                    encoder_hidden_states=text_positive_embeddings,
                    encoder_attention_mask=None,
                    added_cond_kwargs=dict(
                        text_embeds=text_positive_pooled,
                        time_ids=image_metadata_validate
                    ),
                    vision_input_dict=positive_image_output,
                    vision_guided_mask=crossmap_2d_avg,
                    return_as_origin=False,
                    return_text2image_mask=True,
                    multiple_reference_image=False
                )

                pred_negative, pred_negative_dict = self.unet_model(
                    sample=latent,
                    timestep=timestep,
                    encoder_hidden_states=text_negative_embeddings,
                    encoder_attention_mask=None,
                    added_cond_kwargs=dict(
                        text_embeds=text_negative_pooled,
                        time_ids=image_metadata_validate
                    ),
                    vision_input_dict=negative_image_output,
                    vision_guided_mask=crossmap_2d_avg,
                    return_as_origin=False,
                    return_text2image_mask=True,
                    multiple_reference_image=False
                )

                pred = classifier_free_guidance_image_prompt_cascade(
                    pred_t_cond=None, pred_ti_cond=pred_cond, pred_uncond=pred_negative, 
                    guidance_weight_t=guidance_scale, guidance_weight_i=guidance_scale, 
                    guidance_stdev_rescale_factor=0, cfg_rescale_mode="naive_global_direct"
                )
                step = self.scheduler.step(
                    model_output=pred,
                    model_output_type=self.unet_prediction,
                    timestep=timestep,
                    sample=latent)

                latent = step.prev_sample

                current_step += 1
            sample = self.vae_decoder(step.pred_original_sample)
        
        # save each image
        images_pil_list = []
        for sample_i in range(sample.size(0)):
            sample_i_image = torch.clamp(sample[sample_i] * 0.5 + 0.5, min=0, max=1).float()

            images_pil_list.append(to_pil_image(sample_i_image))
            # to_pil_image(sample_i_image).save("./test_{}.jpg".format(sample_i))

        # save grid images
        sample = make_grid(sample, normalize=True, value_range=(-1, 1), nrow=int(samples_per_prompt ** 0.5)).float()
        # to_pil_image(sample).save("./output_grid_image.jpg")

        # save all masks
        text2image_crossmap_2d_all_timesteps = torch.cat(text2image_crossmap_2d_all_timesteps_list, dim=1)
        text2image_crossmap_2d_all_timesteps = rearrange(text2image_crossmap_2d_all_timesteps, "b t c h w -> (b t) c h w")
        c = text2image_crossmap_2d_all_timesteps.size(1)
        text2image_crossmap_2d_all_timesteps = rearrange(text2image_crossmap_2d_all_timesteps, "B (c 1) h w -> (B c) 1 h w")
        sample_mask = make_grid(text2image_crossmap_2d_all_timesteps, normalize=False, value_range=(-1, 1), nrow=int(self.sample_steps * c))
        # to_pil_image(sample_mask).save("./output_grid_mask.jpg")

        if return_each_image:
            return images_pil_list, to_pil_image(sample), to_pil_image(sample_mask)
        else:
            return to_pil_image(sample), to_pil_image(sample_mask)

    def _get_metadata(self, height, width, samples_per_prompt):
        image_metadata_validate = torch.tensor(
            data=[
                width,     # original_height
                height,    # original_width
                0,         # coordinate top
                0,         # coordinate left
                width,     # target_height
                height,    # target_width
            ],
            device=self.device,
            dtype=self.torch_dtype
        ).view(1, -1).repeat(samples_per_prompt, 1)

        return image_metadata_validate
    
    def _find_phrase_positions_in_text(self, text, target_phrase):
        # Compute target phrases
        target_token = torch.zeros(1, 77).to(self.device)
        positions = find_phrase_positions_in_text(text, target_phrase)
        for position in positions:
            prompt_before = text[:position] # NOTE We do not need -1 here because the SDXL text encoder does not encode the trailing space.
            prompt_include = text[:position+len(target_phrase)]
            print("prompt before: ", prompt_before, ", prompt_include: ", prompt_include)
            prompt_before_length = self.text_model.get_vaild_token_length(prompt_before) + 1
            prompt_include_length = self.text_model.get_vaild_token_length(prompt_include) + 1
            print("prompt_before_length: ", prompt_before_length, ", prompt_include_length: ", prompt_include_length)
            target_token[:, prompt_before_length:prompt_include_length] = 1
        
        return target_token