Spaces:
Running
Running
File size: 4,879 Bytes
283dd4a 6deef2b 283dd4a b8c8071 6deef2b 283dd4a 6deef2b 283dd4a 8292fd2 283dd4a 8292fd2 283dd4a 8292fd2 6deef2b 283dd4a 6deef2b 283dd4a 6deef2b 6222f2c 6deef2b 6222f2c 283dd4a b8c8071 6deef2b 283dd4a 6deef2b 6222f2c 6deef2b 283dd4a 6deef2b 283dd4a 6deef2b 283dd4a 6deef2b 3b060e5 6deef2b 283dd4a 6222f2c c8c5d3d 283dd4a c8c5d3d 6222f2c 283dd4a 6deef2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import streamlit as st
import json
import numpy as np
import sentencepiece
from pathlib import Path
import torch
from transformers import (
DebertaV2Config,
DebertaV2Model,
DebertaV2Tokenizer,
)
MODEL_NAME = "microsoft/deberta-v3-base"
MAX_LENGTH = 512
NUM_LABELS = 47
DROPOUT_RATE = 0.1
THRESHOLD = 0.5
class DebertaV3PaperClassifier(torch.nn.Module):
def __init__(self, device, num_labels=NUM_LABELS, dropout_rate=DROPOUT_RATE, class_weights=None):
super().__init__()
self.config = DebertaV2Config.from_pretrained("microsoft/deberta-v3-base")
self.deberta = DebertaV2Model.from_pretrained("microsoft/deberta-v3-base", config=self.config)
self.classifier = torch.nn.Sequential(
torch.nn.Dropout(dropout_rate),
torch.nn.Linear(self.config.hidden_size, 512),
torch.nn.LayerNorm(512),
torch.nn.GELU(),
torch.nn.Dropout(dropout_rate),
torch.nn.Linear(512, num_labels)
)
if class_weights is not None:
self.loss_fct = torch.nn.BCEWithLogitsLoss(weight=class_weights.to(device))
else:
self.loss_fct = torch.nn.BCEWithLogitsLoss()
def forward(self, input_ids, attention_mask, labels=None):
outputs = self.deberta(
input_ids=input_ids,
attention_mask=attention_mask
)
logits = self.classifier(outputs.last_hidden_state[:, 0, :])
loss = None
if labels is not None:
loss = self.loss_fct(logits, labels)
return (loss, logits) if loss is not None else logits
def _init_weights(self):
for module in self.classifier.modules():
if isinstance(module, torch.nn.Linear):
module.weight.data.normal_(mean=0.0, std=0.02)
if module.bias is not None:
module.bias.data.zero_()
@st.cache_resource
def load_assets():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
base_path = Path(__file__).parent
with open(base_path/"label_to_theme.json") as f:
label_to_theme = json.load(f)
with open(base_path/"theme_to_descripiton.json") as f:
theme_to_description = json.load(f)
class_weights = torch.load(f"{base_path}/class_weights.pth").to(device)
model = DebertaV3PaperClassifier(device=device, num_labels=NUM_LABELS, class_weights=class_weights).to(device)
model.load_state_dict(torch.load(f"{base_path}/full_model_v4.pth", map_location=device))
model.eval()
tokenizer = DebertaV2Tokenizer.from_pretrained(MODEL_NAME)
return model, tokenizer, device, label_to_theme, theme_to_description
def preprocess_text(text, tokenizer, max_length=MAX_LENGTH):
inputs = tokenizer(
text,
padding="max_length",
truncation=True,
max_length=max_length,
return_tensors="pt"
)
return inputs
def predict(text: str, model, tokenizer, device) -> list:
"""Run model prediction on input text."""
inputs = preprocess_text(text, tokenizer)
with torch.no_grad():
logits = model(
input_ids=inputs["input_ids"].to(device),
attention_mask=inputs["attention_mask"].to(device)
)
probs = torch.sigmoid(logits).cpu().numpy()[0]
return probs
def get_themes(probs: np.ndarray, label_to_theme: dict) -> list:
"""Get top K themes with probabilities."""
sorted_indices = np.argsort(-probs)
labels = []
sum_percent = 0
for idx in sorted_indices:
labels.append((label_to_theme[str(idx)], probs[idx]))
sum_percent += probs[idx]
if sum_percent >= 0.95:
break
return labels
def main():
st.title("Paper Classification App")
st.write("Classify research papers using DeBERTa model")
model, tokenizer, device, label_to_theme, theme_to_description = load_assets()
title = st.text_input("Title")
abstract = st.text_area("Abstract")
if st.button("Classify"):
if not title and not abstract:
st.warning("Please enter title and/or abstract")
return
if abstract is None:
text = title
elif title is None:
text = abstract
else:
text = f"{title}\n\n{abstract}"
with st.spinner("Analyzing text..."):
probabilities = predict(text, model, tokenizer, device)
themes = get_themes(probabilities, label_to_theme)
st.success("Predicted themes (click to expand):")
# for theme, prob in themes:
# st.write(f"- {theme}: {prob:.2%}")
for theme, prob in themes:
with st.expander(f"{theme} ({prob:.1%})"):
st.markdown(f"**Description**: {theme_to_description[theme]}")
if __name__ == "__main__":
main()
|