Spaces:
Sleeping
Sleeping
File size: 9,297 Bytes
038f313 4c18bfc 038f313 880ced6 e13eb1b 038f313 e13eb1b 038f313 e13eb1b 038f313 e13eb1b 69b4a5f 038f313 3a64d68 e13eb1b e4bb2d0 038f313 e13eb1b 86297f5 e13eb1b 86297f5 e13eb1b f7c4208 86297f5 f7c4208 86297f5 f7c4208 e13eb1b 5b1509d 038f313 e13eb1b 880ced6 f7c4208 e13eb1b 86297f5 e13eb1b 038f313 e13eb1b 038f313 86297f5 f7c4208 86297f5 e13eb1b 86297f5 038f313 e13eb1b 038f313 86297f5 038f313 f7c4208 86297f5 542c2ac e13eb1b f7c4208 e13eb1b 86297f5 e13eb1b 86297f5 e13eb1b 86297f5 e13eb1b 86297f5 e4bb2d0 86297f5 e4bb2d0 e13eb1b 86297f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
model,
custom_model
):
"""
This function handles the chatbot response. It takes in:
- message: the user's new message
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
- system_message: the system prompt
- max_tokens: the maximum number of tokens to generate in the response
- temperature: sampling temperature
- top_p: top-p (nucleus) sampling
- frequency_penalty: penalize repeated tokens in the output
- seed: a fixed seed for reproducibility; -1 will mean 'random'
- model: the selected model from the featured list
- custom_model: a custom model specified by the user
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Model: {model}, Custom Model: {custom_model}")
# Determine the model to use
if custom_model.strip() != "":
selected_model = custom_model.strip()
else:
selected_model = model
print(f"Selected model for inference: {selected_model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Construct the messages array required by the API
messages = [{"role": "system", "content": system_message}]
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
# Start with an empty string to build the response as tokens stream in
response = ""
print(f"Sending request to OpenAI API using model: {selected_model}.")
# Make the streaming request to the HF Inference API via openai-like client
for message_chunk in client.chat.completions.create(
model=selected_model,
max_tokens=max_tokens,
stream=True, # Stream the response
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
if token_text is not None:
print(f"Received token: {token_text}")
response += token_text
yield response
print("Completed response generation.")
# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")
# Define featured models
featured_models_list = [
"meta-llama/Llama-3.3-70B-Instruct",
"mistralai/Mistral-7B-v0.1",
"google/gemma-7b",
]
# Create the Gradio ChatInterface
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
with gr.Tab("Chat"):
with gr.Row():
with gr.Column():
# Chat interface
gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="", label="System message"),
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty"),
gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)"),
gr.Dropdown(label="Featured Models", choices=featured_models_list, value="meta-llama/Llama-3.3-70B-Instruct", interactive=True),
gr.Textbox(value="", label="Custom Model (Optional)"),
],
fill_height=True,
chatbot=chatbot,
)
with gr.Column():
# Featured models accordion
with gr.Accordion("Featured Models", open=True):
model_search = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1)
model_radio = gr.Radio(label="Select a model below", choices=featured_models_list, value="meta-llama/Llama-3.3-70B-Instruct", interactive=True)
def filter_models(search_term):
filtered_models = [m for m in featured_models_list if search_term.lower() in m.lower()]
return gr.update(choices=filtered_models)
model_search.change(filter_models, inputs=model_search, outputs=model_radio)
# Custom model textbox
custom_model_textbox = gr.Textbox(label="Custom Model", placeholder="Enter a custom model path here (optional)", lines=1)
with gr.Tab("Information"):
with gr.Accordion("Featured Models", open=False):
gr.HTML(
"""
<p><a href="https://huggingface.co/models?pipeline_tag=text-generation&sort=trending">See all available models</a></p>
<table style="width:100%; text-align:center; margin:auto;">
<tr>
<th>Model Name</th>
<th>Notes</th>
</tr>
<tr>
<td>meta-llama/Llama-3.3-70B-Instruct</td>
<td>Powerful large language model.</td>
</tr>
<tr>
<td>mistralai/Mistral-7B-v0.1</td>
<td>A smaller, efficient model.</td>
</tr>
<tr>
<td>google/gemma-7b</td>
<td>Google's language model.</td>
</tr>
</table>
"""
)
with gr.Accordion("Parameters Overview", open=False):
gr.Markdown(
"""
## Parameters Overview
### System Message
The system message is an initial instruction or context that you provide to the chatbot. It sets the stage for the conversation and can be used to guide the chatbot's behavior or persona.
### Max New Tokens
This parameter limits the length of the chatbot's response. It specifies the maximum number of tokens (words or subwords) that the chatbot can generate in a single response.
### Temperature
Temperature controls the randomness of the chatbot's responses. A higher temperature (e.g., 1.0) makes the output more random and creative, while a lower temperature (e.g., 0.2) makes the output more focused and deterministic.
### Top-P
Top-P, also known as nucleus sampling, is another way to control the randomness of the responses. It sets a threshold for the cumulative probability of the most likely tokens. The chatbot will only consider tokens whose cumulative probability is below this threshold.
### Frequency Penalty
This parameter discourages the chatbot from repeating the same tokens or phrases too often. A higher value (e.g., 1.0) penalizes repetition more strongly, while a lower value (e.g., 0.0) has no penalty.
### Seed
The seed is a number that initializes the random number generator used by the chatbot. If you set a specific seed, you will get the same response every time you run the chatbot with the same parameters. If you set the seed to -1, a random seed will be used, resulting in different responses each time.
### Featured Models
You can select a featured model from the dropdown list. These models have been pre-selected for their performance and capabilities.
### Custom Model
If you have a specific model that you want to use, you can enter its path in the Custom Model textbox. This allows you to use models that are not included in the featured list.
"""
)
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch() |