Update app.py
Browse files
app.py
CHANGED
@@ -302,8 +302,9 @@ def query_chroma(vectorstore, query, k):
|
|
302 |
return chunks_with_references
|
303 |
|
304 |
def rag_workflow(query):
|
|
|
305 |
docs = query_chroma(vectorstore, query, k=10)
|
306 |
-
context = "\n\n".join([
|
307 |
references = "\n".join([f"[{i+1}] {ref}" for i, (_, ref) in enumerate(docs)])
|
308 |
print(f"Context for the query:\n{context}\n")
|
309 |
print(f"References for the query:\n{references}\n")
|
@@ -344,7 +345,7 @@ def initialize():
|
|
344 |
print(f"Total number of doc_chunks: {len(doc_chunks)}")
|
345 |
|
346 |
vectorstore = setup_chroma(doc_chunks, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY)
|
347 |
-
#
|
348 |
llm = setup_llm(LLM_MODEL_NAME, LLM_TEMPERATURE, GROQ_API_KEY)
|
349 |
|
350 |
|
|
|
302 |
return chunks_with_references
|
303 |
|
304 |
def rag_workflow(query):
|
305 |
+
retrieved_doc_chunks = query_chroma(vectorstore, query, k=10)
|
306 |
docs = query_chroma(vectorstore, query, k=10)
|
307 |
+
context = "\n\n".join([doc_chunk for doc_chunk, _ in retrieved_doc_chunks])
|
308 |
references = "\n".join([f"[{i+1}] {ref}" for i, (_, ref) in enumerate(docs)])
|
309 |
print(f"Context for the query:\n{context}\n")
|
310 |
print(f"References for the query:\n{references}\n")
|
|
|
345 |
print(f"Total number of doc_chunks: {len(doc_chunks)}")
|
346 |
|
347 |
vectorstore = setup_chroma(doc_chunks, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY)
|
348 |
+
# codestore = setup_chroma(code_chunks, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY)
|
349 |
llm = setup_llm(LLM_MODEL_NAME, LLM_TEMPERATURE, GROQ_API_KEY)
|
350 |
|
351 |
|