CallyticsDemo / app.py
bunyaminergen's picture
Initial
989c57c
raw
history blame
9.71 kB
# Standard library imports
import os
# Related third-party imports
from omegaconf import OmegaConf
from nemo.collections.asr.models.msdd_models import NeuralDiarizer
# Local imports
from src.audio.utils import Formatter
from src.audio.metrics import SilenceStats
from src.audio.error import DialogueDetecting
from src.audio.alignment import ForcedAligner
from src.audio.effect import DemucsVocalSeparator
from src.audio.preprocessing import SpeechEnhancement
from src.audio.io import SpeakerTimestampReader, TranscriptWriter
from src.audio.analysis import WordSpeakerMapper, SentenceSpeakerMapper, Audio
from src.audio.processing import AudioProcessor, Transcriber, PunctuationRestorer
from src.text.utils import Annotator
from src.text.llm import LLMOrchestrator, LLMResultHandler
from src.utils.utils import Cleaner, Watcher
from src.db.manager import Database
async def main(audio_file_path: str):
"""
Process an audio file to perform diarization, transcription, punctuation restoration,
and speaker role classification.
Parameters
----------
audio_file_path : str
The path to the input audio file to be processed.
Returns
-------
None
"""
# Paths
config_nemo = "config/nemo/diar_infer_telephonic.yaml"
manifest_path = ".temp/manifest.json"
temp_dir = ".temp"
rttm_file_path = os.path.join(temp_dir, "pred_rttms", "mono_file.rttm")
transcript_output_path = ".temp/output.txt"
srt_output_path = ".temp/output.srt"
config_path = "config/config.yaml"
prompt_path = "config/prompt.yaml"
db_path = ".db/Callytics.sqlite"
db_topic_fetch_path = "src/db/sql/TopicFetch.sql"
db_topic_insert_path = "src/db/sql/TopicInsert.sql"
db_audio_properties_insert_path = "src/db/sql/AudioPropertiesInsert.sql"
db_utterance_insert_path = "src/db/sql/UtteranceInsert.sql"
# Configuration
config = OmegaConf.load(config_path)
device = config.runtime.device
compute_type = config.runtime.compute_type
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = config.runtime.cuda_alloc_conf
# Initialize Classes
dialogue_detector = DialogueDetecting(delete_original=True)
enhancer = SpeechEnhancement(config_path=config_path, output_dir=temp_dir)
separator = DemucsVocalSeparator()
processor = AudioProcessor(audio_path=audio_file_path, temp_dir=temp_dir)
transcriber = Transcriber(device=device, compute_type=compute_type)
aligner = ForcedAligner(device=device)
llm_handler = LLMOrchestrator(config_path=config_path, prompt_config_path=prompt_path, model_id="openai")
llm_result_handler = LLMResultHandler()
cleaner = Cleaner()
formatter = Formatter()
db = Database(db_path)
audio_feature_extractor = Audio(audio_file_path)
# Step 1: Detect Dialogue
has_dialogue = dialogue_detector.process(audio_file_path)
if not has_dialogue:
return
# Step 2: Speech Enhancement
audio_path = enhancer.enhance_audio(
input_path=audio_file_path,
output_path=os.path.join(temp_dir, "enhanced.wav"),
noise_threshold=0.0001,
verbose=True
)
# Step 3: Vocal Separation
vocal_path = separator.separate_vocals(audio_file=audio_path, output_dir=temp_dir)
# Step 4: Transcription
transcript, info = transcriber.transcribe(audio_path=vocal_path)
detected_language = info["language"]
# Step 5: Forced Alignment
word_timestamps = aligner.align(
audio_path=vocal_path,
transcript=transcript,
language=detected_language
)
# Step 6: Diarization
processor.audio_path = vocal_path
mono_audio_path = processor.convert_to_mono()
processor.audio_path = mono_audio_path
processor.create_manifest(manifest_path)
cfg = OmegaConf.load(config_nemo)
cfg.diarizer.manifest_filepath = manifest_path
cfg.diarizer.out_dir = temp_dir
msdd_model = NeuralDiarizer(cfg=cfg)
msdd_model.diarize()
# Step 7: Processing Transcript
# Step 7.1: Speaker Timestamps
speaker_reader = SpeakerTimestampReader(rttm_path=rttm_file_path)
speaker_ts = speaker_reader.read_speaker_timestamps()
# Step 7.2: Mapping Words
word_speaker_mapper = WordSpeakerMapper(word_timestamps, speaker_ts)
wsm = word_speaker_mapper.get_words_speaker_mapping()
# Step 7.3: Punctuation Restoration
punct_restorer = PunctuationRestorer(language=detected_language)
wsm = punct_restorer.restore_punctuation(wsm)
word_speaker_mapper.word_speaker_mapping = wsm
word_speaker_mapper.realign_with_punctuation()
wsm = word_speaker_mapper.word_speaker_mapping
# Step 7.4: Mapping Sentences
sentence_mapper = SentenceSpeakerMapper()
ssm = sentence_mapper.get_sentences_speaker_mapping(wsm)
# Step 8 (Optional): Write Transcript and SRT Files
writer = TranscriptWriter()
writer.write_transcript(ssm, transcript_output_path)
writer.write_srt(ssm, srt_output_path)
# Step 9: Classify Speaker Roles
speaker_roles = await llm_handler.generate("Classification", ssm)
# Step 9.1: LLM results validate and fallback
ssm = llm_result_handler.validate_and_fallback(speaker_roles, ssm)
llm_result_handler.log_result(ssm, speaker_roles)
# Step 10: Sentiment Analysis
ssm_with_indices = formatter.add_indices_to_ssm(ssm)
annotator = Annotator(ssm_with_indices)
sentiment_results = await llm_handler.generate("SentimentAnalysis", user_input=ssm)
annotator.add_sentiment(sentiment_results)
# Step 11: Profanity Word Detection
profane_results = await llm_handler.generate("ProfanityWordDetection", user_input=ssm)
annotator.add_profanity(profane_results)
# Step 12: Summary
summary_result = await llm_handler.generate("Summary", user_input=ssm)
annotator.add_summary(summary_result)
# Step 13: Conflict Detection
conflict_result = await llm_handler.generate("ConflictDetection", user_input=ssm)
annotator.add_conflict(conflict_result)
# Step 14: Topic Detection
topics = db.fetch(db_topic_fetch_path)
topic_result = await llm_handler.generate(
"TopicDetection",
user_input=ssm,
system_input=topics
)
annotator.add_topic(topic_result)
# Step 15: File/Audio Feature Extraction
props = audio_feature_extractor.properties()
(
name,
file_extension,
absolute_file_path,
sample_rate,
min_frequency,
max_frequency,
audio_bit_depth,
num_channels,
audio_duration,
rms_loudness,
final_features
) = props
rms_loudness_db = final_features["RMSLoudness"]
zero_crossing_rate_db = final_features["ZeroCrossingRate"]
spectral_centroid_db = final_features["SpectralCentroid"]
eq_20_250_db = final_features["EQ_20_250_Hz"]
eq_250_2000_db = final_features["EQ_250_2000_Hz"]
eq_2000_6000_db = final_features["EQ_2000_6000_Hz"]
eq_6000_20000_db = final_features["EQ_6000_20000_Hz"]
mfcc_values = [final_features[f"MFCC_{i}"] for i in range(1, 14)]
final_output = annotator.finalize()
# Step 16: Tocal Silence Calculation
stats = SilenceStats.from_segments(final_output['ssm'])
t_std = stats.threshold_std(factor=0.99)
final_output["silence"] = t_std
print("Final_Output:", final_output)
# Step 17: Database
# Step 17.1: Insert File Table
summary = final_output.get("summary", "")
conflict_flag = 1 if final_output.get("conflict", False) else 0
silence_value = final_output.get("silence", 0.0)
detected_topic = final_output.get("topic", "Unknown")
topic_id = db.get_or_insert_topic_id(detected_topic, topics, db_topic_insert_path)
params = (
name,
topic_id,
file_extension,
absolute_file_path,
sample_rate,
min_frequency,
max_frequency,
audio_bit_depth,
num_channels,
audio_duration,
rms_loudness_db,
zero_crossing_rate_db,
spectral_centroid_db,
eq_20_250_db,
eq_250_2000_db,
eq_2000_6000_db,
eq_6000_20000_db,
*mfcc_values,
summary,
conflict_flag,
silence_value
)
last_id = db.insert(db_audio_properties_insert_path, params)
print(f"Audio properties inserted successfully into the File table with ID: {last_id}")
# Step 17.2: Insert Utterance Table
utterances = final_output["ssm"]
for utterance in utterances:
file_id = last_id
speaker = utterance["speaker"]
sequence = utterance["index"]
start_time = utterance["start_time"] / 1000.0
end_time = utterance["end_time"] / 1000.0
content = utterance["text"]
sentiment = utterance["sentiment"]
profane = 1 if utterance["profane"] else 0
utterance_params = (
file_id,
speaker,
sequence,
start_time,
end_time,
content,
sentiment,
profane
)
db.insert(db_utterance_insert_path, utterance_params)
print("Utterances inserted successfully into the Utterance table.")
# Step 18: Clean Up
cleaner.cleanup(temp_dir, audio_file_path)
async def process(path: str):
"""
Asynchronous callback function that is triggered when a new audio file is detected.
Parameters
----------
path : str
The path to the newly created audio file.
Returns
-------
None
"""
print(f"Processing new audio file: {path}")
await main(path)
if __name__ == "__main__":
directory_to_watch = ".data/input"
Watcher.start_watcher(directory_to_watch, process)