File size: 8,321 Bytes
1b97239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Standard library imports
from typing import Annotated, Dict, Any, List


class Annotator:
    """
    A class to annotate a structured sentiment model (SSM) with various
    attributes such as sentiment, profanity, summary, conflict, and topic.

    Parameters
    ----------
    ssm : list of dict
        A list of dictionaries representing the structured sentiment model.

    Attributes
    ----------
    ssm : list of dict
        The structured sentiment model to be annotated.
    global_summary : str
        The global summary of the annotations.
    global_conflict : bool
        The global conflict status of the annotations.
    global_topic : str
        The global topic of the annotations.
    """

    def __init__(self, ssm: Annotated[List[Dict[str, Any]], "Structured Sentiment Model"]):
        """
        Initializes the Annotator class with the provided SSM.

        Parameters
        ----------
        ssm : list of dict
            A list of dictionaries representing the structured sentiment model.
        """
        self.ssm = ssm
        self.global_summary = ""
        self.global_conflict = False
        self.global_topic = "Unknown"

    def add_sentiment(
            self,
            sentiment_results: Annotated[Dict[str, Any], "Sentiment analysis results"]
    ):
        """
        Adds sentiment data to the SSM.

        Parameters
        ----------
        sentiment_results : dict
            A dictionary containing sentiment analysis results, including
            a "sentiments" key with a list of sentiment dictionaries.

        Examples
        --------
        >>> annotator = Annotator([{"text": "example"}])
        >>> results = {"sentiments": [{"index": 0, "sentiment": "Positive"}]}
        >>> annotator.add_sentiment(sentiment_results)
        """
        if len(sentiment_results["sentiments"]) != len(self.ssm):
            print(f"Mismatch: SSM Length = {len(self.ssm)}, "
                  f"Sentiments Length = {len(sentiment_results['sentiments'])}")
            print("Adjusting to match lengths...")

        if len(sentiment_results["sentiments"]) < len(self.ssm):
            for idx in range(len(sentiment_results["sentiments"]), len(self.ssm)):
                sentiment_results["sentiments"].append({"index": idx, "sentiment": "Neutral"})

        elif len(sentiment_results["sentiments"]) > len(self.ssm):
            sentiment_results["sentiments"] = sentiment_results["sentiments"][:len(self.ssm)]

        for sentiment_data in sentiment_results["sentiments"]:
            idx = sentiment_data["index"]
            if idx < len(self.ssm):
                self.ssm[idx]["sentiment"] = sentiment_data["sentiment"]
            else:
                print(f"Skipping sentiment data at index {idx}, out of range.")

    def add_profanity(
            self,
            profane_results: Annotated[Dict[str, Any], "Profanity detection results"]
    ) -> List[Dict[str, Any]]:
        """
        Adds profanity data to the SSM.

        Parameters
        ----------
        profane_results : dict
            A dictionary containing profanity detection results, including
            a "profanity" key with a list of profanity dictionaries.

        Returns
        -------
        list of dict
            The updated SSM with profanity annotations.

        Examples
        --------
        >>> annotator = Annotator([{"text": "example"}])
        >>> results = {"profanity": [{"index": 0, "profane": True}]}
        >>> annotator.add_profanity(profane_results)
        """
        if "profanity" not in profane_results:
            print("Warning: 'profanity' key is missing in profane_results.")
            return self.ssm

        if len(profane_results["profanity"]) != len(self.ssm):
            print(f"Mismatch: SSM Length = {len(self.ssm)}, "
                  f"Profanity Length = {len(profane_results['profanity'])}")
            print("Adjusting to match lengths...")

        if len(profane_results["profanity"]) < len(self.ssm):
            for idx in range(len(profane_results["profanity"]), len(self.ssm)):
                profane_results["profanity"].append({"index": idx, "profane": False})

        elif len(profane_results["profanity"]) > len(self.ssm):
            profane_results["profanity"] = profane_results["profanity"][:len(self.ssm)]

        for profanity_data in profane_results["profanity"]:
            idx = profanity_data["index"]
            if idx < len(self.ssm):
                self.ssm[idx]["profane"] = profanity_data["profane"]
            else:
                print(f"Skipping profanity data at index {idx}, out of range.")

        return self.ssm

    def add_summary(
            self,
            summary_result: Annotated[Dict[str, str], "Summary results"]
    ) -> Dict[str, Any]:
        """
        Adds a global summary to the annotations.

        Parameters
        ----------
        summary_result : dict
            A dictionary containing a "summary" key with the summary text.

        Returns
        -------
        dict
            The updated SSM and global summary.

        Examples
        --------
        >>> annotator = Annotator([{"text": "example"}])
        >>> result = {"summary": "This is a summary."}
        >>> annotator.add_summary(summary_result)
        """
        if not summary_result or "summary" not in summary_result:
            print("Warning: 'summary' key is missing in summary_result.")
            return {"ssm": self.ssm, "summary": self.global_summary}

        self.global_summary = summary_result["summary"]
        return {"ssm": self.ssm, "summary": self.global_summary}

    def add_conflict(
            self,
            conflict_result: Annotated[Dict[str, bool], "Conflict detection results"]
    ) -> Dict[str, Any]:
        """
        Adds a global conflict status to the annotations.

        Parameters
        ----------
        conflict_result : dict
            A dictionary containing a "conflict" key with a boolean value.

        Returns
        -------
        dict
            The updated SSM and global conflict status.

        Examples
        --------
        >>> annotator = Annotator([{"text": "example"}])
        >>> result = {"conflict": True}
        >>> annotator.add_conflict(conflict_result)
        """
        if not conflict_result or "conflict" not in conflict_result:
            print("Warning: 'conflict' key is missing in conflict_result.")
            return {"ssm": self.ssm, "conflict": self.global_conflict}

        self.global_conflict = conflict_result["conflict"]
        return {"ssm": self.ssm, "conflict": self.global_conflict}

    def add_topic(
            self,
            topic_result: Annotated[Dict[str, str], "Topic detection results"]
    ) -> Dict[str, Any]:
        """
        Adds a global topic to the annotations.

        Parameters
        ----------
        topic_result : dict
            A dictionary containing a "topic" key with the topic name.

        Returns
        -------
        dict
            The updated SSM and global topic.

        Examples
        --------
        >>> annotator = Annotator([{"text": "example"}])
        >>> result = {"topic": "Technology"}
        >>> annotator.add_topic(topic_result)
        """
        if not topic_result or "topic" not in topic_result:
            print("Warning: 'topic' key is missing in topic_result.")
            return {"ssm": self.ssm, "topic": self.global_topic}

        self.global_topic = topic_result["topic"]
        return {"ssm": self.ssm, "topic": self.global_topic}

    def finalize(self) -> Dict[str, Any]:
        """
        Finalizes the annotations by returning the updated SSM along with
        global annotations for summary, conflict, and topic.

        Returns
        -------
        dict
            A dictionary containing the updated SSM and global annotations.

        Examples
        --------
        >>> annotator = Annotator([{"text": "example"}])
        >>> annotator.finalize()
        {'ssm': [{'text': 'example'}], 'summary': '', 'conflict': False, 'topic': 'Unknown'}
        """
        return {
            "ssm": self.ssm,
            "summary": self.global_summary,
            "conflict": self.global_conflict,
            "topic": self.global_topic
        }