File size: 18,011 Bytes
1b97239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
# Standard library imports
import os
import json
import asyncio
from abc import ABC, abstractmethod
from collections import OrderedDict
from typing import Optional, Any, Annotated

# Related third-party imports
import yaml
import torch
import openai
from openai import OpenAI
from dotenv import load_dotenv
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM

load_dotenv()


class LanguageModel(ABC):
    """
    Abstract base class for language models.

    This class provides a common interface for language models with methods
    to generate text and unload resources.

    Parameters
    ----------
    config : dict
        Configuration for the language model.
    """

    def __init__(self, config: Annotated[dict, "Configuration for the language model"]):
        self.config = config

    @abstractmethod
    def generate(
            self,
            messages: Annotated[list, "List of message dictionaries"],
            **kwargs: Annotated[Any, "Additional keyword arguments"]
    ) -> Annotated[str, "Generated text"]:
        """
        Generate text based on the given input messages.

        Parameters
        ----------
        messages : list
            List of message dictionaries with 'role' and 'content'.
        **kwargs : Any
            Additional keyword arguments.

        Returns
        -------
        str
            Generated text output.
        """
        pass

    def unload(self) -> Annotated[None, "Unload resources used by the language model"]:
        """
        Unload resources used by the language model.
        """
        pass


class LLaMAModel(LanguageModel):
    """
    LLaMA language model implementation using Hugging Face Transformers.

    Parameters
    ----------
    config : dict
        Configuration for the LLaMA model.
    """

    def __init__(self, config: Annotated[dict, "Configuration for the LLaMA model"]):
        super().__init__(config)
        model_name = config['model_name']
        compute_type = config.get('compute_type')
        torch.cuda.empty_cache()

        print(f"Loading LLaMA model: {model_name}")
        print(f"CUDA available: {torch.cuda.is_available()}")
        if torch.cuda.is_available():
            print(f"CUDA Version: {torch.version.cuda}")
            print(f"GPU: {torch.cuda.get_device_name(0)}")
        else:
            print("GPU not available, using CPU.")

        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModelForCausalLM.from_pretrained(
            model_name,
            device_map="auto",
            torch_dtype=torch.bfloat16 if torch.cuda.is_available() and compute_type == "float16" else torch.float32,
            low_cpu_mem_usage=True
        )
        self.pipe = pipeline(
            "text-generation",
            model=self.model,
            tokenizer=self.tokenizer,
            device_map="auto",
        )

    def generate(
            self,
            messages: Annotated[list, "List of message dictionaries"],
            max_new_tokens: Annotated[int, "Maximum number of new tokens to generate"] = 10000,
            truncation: Annotated[bool, "Whether to truncate the input"] = True,
            batch_size: Annotated[int, "Batch size for generation"] = 1,
            pad_token_id: Annotated[Optional[int], "Padding token ID"] = None
    ) -> Annotated[str, "Generated text"]:
        """
        Generate text based on input messages using the LLaMA model.

        Parameters
        ----------
        messages : list
            List of message dictionaries with 'role' and 'content'.
        max_new_tokens : int, optional
            Maximum number of tokens to generate. Default is 10000.
        truncation : bool, optional
            Whether to truncate the input. Default is True.
        batch_size : int, optional
            Batch size for generation. Default is 1.
        pad_token_id : int, optional
            Padding token ID. Defaults to the tokenizer's EOS token ID.

        Returns
        -------
        str
            Generated text.
        """
        prompt = self._format_messages_llama(messages)
        output = self.pipe(
            prompt,
            max_new_tokens=max_new_tokens,
            truncation=truncation,
            batch_size=batch_size,
            pad_token_id=pad_token_id if pad_token_id is not None else self.tokenizer.eos_token_id
        )
        return output[0]['generated_text']

    @staticmethod
    def _format_messages_llama(messages: Annotated[list, "List of message dictionaries"]) -> Annotated[
        str, "Formatted prompt"]:
        """
        Format messages into a single prompt for LLaMA.

        Parameters
        ----------
        messages : list
            List of message dictionaries with 'role' and 'content'.

        Returns
        -------
        str
            Formatted prompt.
        """
        prompt = ""
        for message in messages:
            role = message.get("role", "").lower()
            content = message.get("content", "")
            if role == "system":
                prompt += f"System: {content}\n"
            elif role == "user":
                prompt += f"User: {content}\n"
            elif role == "assistant":
                prompt += f"Assistant: {content}\n"
        prompt += "Assistant:"
        return prompt

    def unload(self) -> Annotated[None, "Unload the LLaMA model and release resources"]:
        """
        Unload the LLaMA model and release resources.
        """
        del self.pipe
        del self.model
        del self.tokenizer
        torch.cuda.empty_cache()
        print(f"LLaMA model '{self.config['model_name']}' unloaded.")


class OpenAIModel(LanguageModel):
    """
    OpenAI GPT model integration.

    Parameters
    ----------
    config : dict
        Configuration for the OpenAI model.
    """

    def __init__(self, config: Annotated[dict, "Configuration for the OpenAI model"]):
        super().__init__(config)
        openai_api_key = config.get('openai_api_key')
        if not openai_api_key:
            raise ValueError("OpenAI API key must be provided.")
        self.client = OpenAI(api_key=openai_api_key)
        self.model_name = config.get('model_name', 'gpt-4')

    def generate(
            self,
            messages: Annotated[list, "List of message dictionaries"],
            max_length: Annotated[int, "Maximum number of tokens for the output"] = 10000,
            return_as_json: bool = False,
            **kwargs: Annotated[Any, "Additional keyword arguments"]
    ) -> Annotated[str, "Generated text"]:
        """
        Generate text using OpenAI's API.

        Parameters
        ----------
        messages : list
            List of message dictionaries with 'role' and 'content'.
        max_length : int, optional
            Maximum number of tokens for the output. Default is 10000.
        return_as_json : bool, optional
            If True, response_format={"type": "json_object"} parametresi eklenir ve dönen içerik
            json.loads ile dict'e dönüştürülür. Varsayılan False'dur.
        **kwargs : Any
            Additional keyword arguments.

        Returns
        -------
        str or dict
            Generated text as a string if return_as_json=False.
            If return_as_json=True and the response is in valid JSON format,
            returns a dict.
        """

        create_kwargs = {
            "model": self.model_name,
            "messages": messages,
            "max_tokens": max_length,
            "temperature": kwargs.get('temperature', 0.7)
        }

        if return_as_json is True:
            create_kwargs["response_format"] = {"type": "json_object"}

        completion = self.client.chat.completions.create(**create_kwargs)
        response_text = completion.choices[0].message.content

        if return_as_json:
            try:
                return json.loads(response_text)
            except json.JSONDecodeError:
                return response_text

        return response_text

    def unload(self) -> Annotated[None, "Placeholder for OpenAI model unload (no local resources to release)"]:
        """
        Placeholder for OpenAI model unload (no local resources to release).
        """
        print(f"OpenAI model '{self.model_name}' unloaded.")


class AzureOpenAIModel(LanguageModel):
    """
    Azure OpenAI model integration.

    Parameters
    ----------
    config : dict
        Configuration for the Azure OpenAI model.
    """

    def __init__(self, config: Annotated[dict, "Configuration for the Azure OpenAI model"]):
        super().__init__(config)
        self.model_name = config.get('model_name', 'gpt-4o')
        self.api_key = config.get('azure_openai_api_key')
        self.api_base = config.get('azure_openai_api_base')
        self.api_version = config.get('azure_openai_api_version')

        if not all([self.api_key, self.api_base, self.api_version]):
            raise ValueError("Azure OpenAI API key, base, and version must be provided.")

        openai.api_type = "azure"
        openai.api_base = self.api_base
        openai.api_version = self.api_version
        openai.api_key = self.api_key

    def generate(
            self,
            messages: Annotated[list, "List of message dictionaries"],
            max_length: Annotated[int, "Maximum number of tokens for the output"] = 10000,
            **kwargs: Annotated[Any, "Additional keyword arguments"]
    ) -> Annotated[str, "Generated text"]:
        """
        Generate text using Azure OpenAI's API.

        Parameters
        ----------
        messages : list
            List of message dictionaries with 'role' and 'content'.
        max_length : int, optional
            Maximum number of tokens for the output. Default is 10000.
        **kwargs : Any
            Additional keyword arguments.

        Returns
        -------
        str
            Generated text.
        """
        response = openai.ChatCompletion.create(
            deployment_id=self.model_name,
            messages=messages,
            max_tokens=max_length,
            temperature=kwargs.get('temperature', 0.7)
        )
        return response.choices[0].message['content']

    def unload(self) -> Annotated[None, "Placeholder for Azure OpenAI model unload (no local resources to release)"]:
        """
        Placeholder for Azure OpenAI model unload (no local resources to release).
        """
        print(f"Azure OpenAI model '{self.model_name}' unloaded.")


class ModelRegistry:
    """
    Registry to manage language model class registrations.

    This class allows dynamic registration and retrieval of model classes.
    """
    _registry = {}

    @classmethod
    def register(
            cls,
            model_id: Annotated[str, "Unique identifier for the model"],
            model_class: Annotated[type, "The class to register"]
    ) -> Annotated[None, "Registration completed"]:
        """
        Register a model class with the registry.

        Parameters
        ----------
        model_id : str
            Unique identifier for the model class.
        model_class : type
            The class to register.
        """
        cls._registry[model_id.lower()] = model_class

    @classmethod
    def get_model_class(cls, model_id: Annotated[str, "Unique identifier for the model"]) -> Annotated[
        type, "Model class"]:
        """
        Retrieve a model class by its unique identifier.

        Parameters
        ----------
        model_id : str
            Unique identifier for the model class.

        Returns
        -------
        type
            The model class corresponding to the identifier.

        Raises
        ------
        ValueError
            If the model ID is not registered.
        """
        model_class = cls._registry.get(model_id.lower())
        if not model_class:
            raise ValueError(f"No class found for model ID '{model_id}'.")
        return model_class


class ModelFactory:
    """
    Factory to create language model instances.

    This class uses the `ModelRegistry` to create instances of registered model classes.
    """

    @staticmethod
    def create_model(
            model_id: Annotated[str, "Unique identifier for the model"],
            config: Annotated[dict, "Configuration for the model"]
    ) -> Annotated[LanguageModel, "Instance of the language model"]:
        """
        Create a language model instance based on its unique identifier.

        Parameters
        ----------
        model_id : str
            Unique identifier for the model.
        config : dict
            Configuration for the model.

        Returns
        -------
        LanguageModel
            An instance of the language model.
        """
        model_class = ModelRegistry.get_model_class(model_id)
        return model_class(config)


class LanguageModelManager:
    """
    Manages multiple language models with caching and async support.

    Parameters
    ----------
    config_path : str
        Path to the YAML configuration file.
    cache_size : int, optional
        Maximum number of models to cache. Default is 10.
    """

    def __init__(
            self,
            config_path: Annotated[str, "Path to the YAML configuration file"],
            cache_size: Annotated[int, "Maximum number of models to cache"] = 10
    ):
        self.config_path = config_path
        self.cache_size = cache_size
        self.models = OrderedDict()
        self.full_config = self._load_full_config(config_path)
        self.runtime_config = self.full_config.get('runtime', {})
        self.models_config = self.full_config.get('models', {})
        self.lock = asyncio.Lock()

    @staticmethod
    def _load_full_config(config_path: Annotated[str, "Path to the YAML configuration file"]) -> Annotated[
        dict, "Parsed configuration"]:
        """
        Load and parse the YAML configuration file.

        Parameters
        ----------
        config_path : str
            Path to the YAML file.

        Returns
        -------
        dict
            Parsed configuration.
        """
        with open(config_path, encoding='utf-8') as f:
            config = yaml.safe_load(f)

        for model_id, model_config in config.get('models', {}).items():
            for key, value in model_config.items():
                if isinstance(value, str) and value.startswith("${") and value.endswith("}"):
                    env_var = value[2:-1]
                    model_config[key] = os.getenv(env_var, "")
        return config

    async def get_model(
            self,
            model_id: Annotated[str, "Unique identifier for the model"]
    ) -> Annotated[LanguageModel, "Instance of the language model"]:
        """
        Retrieve a language model instance from the cache or create a new one.

        Parameters
        ----------
        model_id : str
            Unique identifier for the model.

        Returns
        -------
        LanguageModel
            An instance of the language model.

        Raises
        ------
        ValueError
            If the model ID is not found in the configuration.
        """
        async with self.lock:
            torch.cuda.empty_cache()
            if model_id in self.models:
                self.models.move_to_end(model_id)
                return self.models[model_id]
            else:
                config = self.models_config.get(model_id)
                if not config:
                    raise ValueError(f"Model ID '{model_id}' not found in configuration.")
                config['compute_type'] = self.runtime_config.get('compute_type', 'float16')
                model = ModelFactory.create_model(model_id, config)
                self.models[model_id] = model
                if len(self.models) > self.cache_size:
                    oldest_model_id, oldest_model = self.models.popitem(last=False)
                    oldest_model.unload()
                return model

    async def generate(
            self,
            model_id: Annotated[str, "Unique identifier for the model"],
            messages: Annotated[list, "List of message dictionaries"],
            **kwargs: Annotated[Any, "Additional keyword arguments"]
    ) -> Annotated[Optional[str], "Generated text or None if an error occurs"]:
        """
        Generate text using a specific language model.

        Parameters
        ----------
        model_id : str
            Unique identifier for the model.
        messages : list
            List of message dictionaries with 'role' and 'content'.
        **kwargs : Any
            Additional keyword arguments.

        Returns
        -------
        str or None
            Generated text or None if an error occurs.
        """
        try:
            model = await self.get_model(model_id)
            return model.generate(messages, **kwargs)
        except Exception as e:
            print(f"Error with model ({model_id}): {e}")
            return None

    def unload_all(self) -> Annotated[None, "Unload all cached models and release resources"]:
        """
        Unload all cached models and release resources.
        """
        for model in self.models.values():
            model.unload()
        self.models.clear()
        print("All models have been unloaded.")


if __name__ == "__main__":
    # noinspection PyMissingOrEmptyDocstring
    async def main():
        config_path = 'config/config.yaml'

        manager = LanguageModelManager(config_path=config_path, cache_size=11)

        llama_model_id = "llama"
        llama_messages = [
            {"role": "system", "content": "You are a pirate. Answer accordingly!"},
            {"role": "user", "content": "Who are you?"}
        ]
        llama_output = await manager.generate(model_id=llama_model_id, messages=llama_messages)
        print(f"LLaMA Model Output: {llama_output}")


    asyncio.run(main())