Spaces:
Running
Running
File size: 20,852 Bytes
1b97239 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
# Standard library imports
import os
import re
import json
from io import TextIOWrapper
from typing import Annotated, Optional, Tuple, List, Dict
# Related third party imports
import torch
import faster_whisper
from pydub import AudioSegment
from deepmultilingualpunctuation import PunctuationModel
# Local imports
from src.audio.utils import TokenizerUtils
class AudioProcessor:
"""
A class to handle various audio processing tasks, such as conversion,
trimming, merging, and audio transformations.
Parameters
----------
audio_path : str
Path to the audio file to process.
temp_dir : str, optional
Directory for storing temporary files. Defaults to ".temp".
Attributes
----------
audio_path : str
Path to the input audio file.
temp_dir : str
Path to the temporary directory for processed files.
mono_audio_path : Optional[str]
Path to the mono audio file after conversion.
Methods
-------
convert_to_mono()
Converts the audio file to mono.
get_duration()
Gets the duration of the audio file in seconds.
change_format(new_format)
Converts the audio file to a new format.
trim_audio(start_time, end_time)
Trims the audio file to the specified time range.
adjust_volume(change_in_db)
Adjusts the volume of the audio file.
get_channels()
Gets the number of audio channels.
fade_in_out(fade_in_duration, fade_out_duration)
Applies fade-in and fade-out effects to the audio.
merge_audio(other_audio_path)
Merges the current audio with another audio file.
split_audio(chunk_duration)
Splits the audio file into chunks of a specified duration.
create_manifest(manifest_path)
Creates a manifest file containing metadata about the audio.
"""
def __init__(
self,
audio_path: Annotated[str, "Path to the audio file"],
temp_dir: Annotated[str, "Directory for temporary processed files"] = ".temp"
) -> None:
if not isinstance(audio_path, str):
raise TypeError("Expected 'audio_path' to be a string.")
if not isinstance(temp_dir, str):
raise TypeError("Expected 'temp_dir' to be a string.")
self.audio_path = audio_path
self.temp_dir = temp_dir
self.mono_audio_path = None
os.makedirs(temp_dir, exist_ok=True)
def convert_to_mono(self) -> Annotated[str, "Path to the mono audio file"]:
"""
Convert the audio file to mono.
Returns
-------
str
Path to the mono audio file.
Examples
--------
>>> processor = AudioProcessor("example.wav")
>>> mono_path = processor.convert_to_mono()
>>> isinstance(mono_path, str)
True
"""
sound = AudioSegment.from_file(self.audio_path)
mono_sound = sound.set_channels(1)
self.mono_audio_path = os.path.join(self.temp_dir, "mono_file.wav")
mono_sound.export(self.mono_audio_path, format="wav")
return self.mono_audio_path
def get_duration(self) -> Annotated[float, "Audio duration in seconds"]:
"""
Get the duration of the audio file.
Returns
-------
float
Duration of the audio in seconds.
Examples
--------
>>> processor = AudioProcessor("example.wav")
>>> duration = processor.get_duration()
>>> isinstance(duration, float)
True
"""
sound = AudioSegment.from_file(self.audio_path)
return len(sound) / 1000.0
def change_format(
self, new_format: Annotated[str, "New audio format"]
) -> Annotated[str, "Path to converted audio file"]:
"""
Convert the audio file to a new format.
Parameters
----------
new_format : str
Desired format for the output audio file.
Returns
-------
str
Path to the converted audio file.
Examples
--------
>>> processor = AudioProcessor("example.wav")
>>> converted_path = processor.change_format("mp3")
>>> isinstance(converted_path, str)
True
"""
if not isinstance(new_format, str):
raise TypeError("Expected 'new_format' to be a string.")
sound = AudioSegment.from_file(self.audio_path)
output_path = os.path.join(self.temp_dir, f"converted_file.{new_format}")
sound.export(output_path, format=new_format)
return output_path
def trim_audio(
self, start_time: Annotated[float, "Start time in seconds"],
end_time: Annotated[float, "End time in seconds"]
) -> Annotated[str, "Path to trimmed audio file"]:
"""
Trim the audio file to the specified duration.
Parameters
----------
start_time : float
Start time in seconds.
end_time : float
End time in seconds.
Returns
-------
str
Path to the trimmed audio file.
Examples
--------
>>> processor = AudioProcessor("example.wav")
>>> trimmed_path = processor.trim_audio(0.0, 10.0)
>>> isinstance(trimmed_path, str)
True
"""
if not isinstance(start_time, (int, float)):
raise TypeError("Expected 'start_time' to be a float or int.")
if not isinstance(end_time, (int, float)):
raise TypeError("Expected 'end_time' to be a float or int.")
sound = AudioSegment.from_file(self.audio_path)
trimmed_audio = sound[start_time * 1000:end_time * 1000]
trimmed_audio_path = os.path.join(self.temp_dir, "trimmed_file.wav")
trimmed_audio.export(trimmed_audio_path, format="wav")
return trimmed_audio_path
def adjust_volume(
self, change_in_db: Annotated[float, "Volume change in dB"]
) -> Annotated[str, "Path to volume-adjusted audio file"]:
"""
Adjust the volume of the audio file.
Parameters
----------
change_in_db : float
Volume change in decibels.
Returns
-------
str
Path to the volume-adjusted audio file.
Examples
--------
>>> processor = AudioProcessor("example.wav")
>>> adjusted_path = processor.adjust_volume(5.0)
>>> isinstance(adjusted_path, str)
True
"""
if not isinstance(change_in_db, (int, float)):
raise TypeError("Expected 'change_in_db' to be a float or int.")
sound = AudioSegment.from_file(self.audio_path)
adjusted_audio = sound + change_in_db
adjusted_audio_path = os.path.join(self.temp_dir, "adjusted_volume.wav")
adjusted_audio.export(adjusted_audio_path, format="wav")
return adjusted_audio_path
def get_channels(self) -> Annotated[int, "Number of channels"]:
"""
Get the number of audio channels.
Returns
-------
int
Number of audio channels.
Examples
--------
>>> processor = AudioProcessor("example.wav")
>>> channels = processor.get_channels()
>>> isinstance(channels, int)
True
"""
sound = AudioSegment.from_file(self.audio_path)
return sound.channels
def fade_in_out(
self, fade_in_duration: Annotated[float, "Fade-in duration in seconds"],
fade_out_duration: Annotated[float, "Fade-out duration in seconds"]
) -> Annotated[str, "Path to faded audio file"]:
"""
Apply fade-in and fade-out effects to the audio file.
Parameters
----------
fade_in_duration : float
Duration of the fade-in effect in seconds.
fade_out_duration : float
Duration of the fade-out effect in seconds.
Returns
-------
str
Path to the faded audio file.
Examples
--------
>>> processor = AudioProcessor("example.wav")
>>> faded_path = processor.fade_in_out(1.0, 2.0)
>>> isinstance(faded_path, str)
True
"""
if not isinstance(fade_in_duration, (int, float)):
raise TypeError("Expected 'fade_in_duration' to be a float or int.")
if not isinstance(fade_out_duration, (int, float)):
raise TypeError("Expected 'fade_out_duration' to be a float or int.")
sound = AudioSegment.from_file(self.audio_path)
faded_audio = sound.fade_in(fade_in_duration * 1000).fade_out(fade_out_duration * 1000)
faded_audio_path = os.path.join(self.temp_dir, "faded_audio.wav")
faded_audio.export(faded_audio_path, format="wav")
return faded_audio_path
def merge_audio(
self, other_audio_path: Annotated[str, "Path to other audio file"]
) -> Annotated[str, "Path to merged audio file"]:
"""
Merge the current audio file with another audio file.
Parameters
----------
other_audio_path : str
Path to the other audio file.
Returns
-------
str
Path to the merged audio file.
Examples
--------
>>> processor = AudioProcessor("example.wav")
>>> merged_path = processor.merge_audio("other_example.wav")
>>> isinstance(merged_path, str)
True
"""
if not isinstance(other_audio_path, str):
raise TypeError("Expected 'other_audio_path' to be a string.")
sound1 = AudioSegment.from_file(self.audio_path)
sound2 = AudioSegment.from_file(other_audio_path)
merged_audio = sound1 + sound2
merged_audio_path = os.path.join(self.temp_dir, "merged_audio.wav")
merged_audio.export(merged_audio_path, format="wav")
return merged_audio_path
def split_audio(
self, chunk_duration: Annotated[float, "Chunk duration in seconds"]
) -> Annotated[List[str], "Paths to audio chunks"]:
"""
Split the audio file into chunks of the specified duration.
Parameters
----------
chunk_duration : float
Duration of each chunk in seconds.
Returns
-------
List[str]
Paths to the generated audio chunks.
Examples
--------
>>> processor = AudioProcessor("example.wav")
>>> chunks = processor.split_audio(10.0)
>>> isinstance(chunks, list)
True
"""
if not isinstance(chunk_duration, (int, float)):
raise TypeError("Expected 'chunk_duration' to be a float or int.")
sound = AudioSegment.from_file(self.audio_path)
chunk_paths = []
for i in range(0, len(sound), int(chunk_duration * 1000)):
chunk = sound[i:i + int(chunk_duration * 1000)]
chunk_path = os.path.join(self.temp_dir, f"chunk_{i // 1000}.wav")
chunk.export(chunk_path, format="wav")
chunk_paths.append(chunk_path)
return chunk_paths
def create_manifest(
self,
manifest_path: Annotated[str, "Manifest file path"]
) -> None:
"""
Create a manifest file containing metadata about the audio file.
Parameters
----------
manifest_path : str
Path to the manifest file.
Examples
--------
>>> processor = AudioProcessor("example.wav")
>>> processor.create_manifest("manifest.json")
"""
duration = self.get_duration()
manifest_entry = {
"audio_filepath": self.audio_path,
"offset": 0,
"duration": duration,
"label": "infer",
"text": "-",
"rttm_filepath": None,
"uem_filepath": None
}
with open(manifest_path, 'w', encoding='utf-8') as f: # type: TextIOWrapper
json.dump(manifest_entry, f)
class Transcriber:
"""
A class for transcribing audio files using a pre-trained Whisper model.
Parameters
----------
model_name : str, optional
Name of the model to load. Defaults to 'large-v3'.
device : str, optional
Device to use for model inference ('cpu' or 'cuda'). Defaults to 'cpu'.
compute_type : str, optional
Data type for model computation ('int8', 'float16', etc.). Defaults to 'int8'.
Attributes
----------
model : faster_whisper.WhisperModel
Loaded Whisper model for transcription.
device : str
Device used for inference.
Methods
-------
transcribe(audio_path, language=None, suppress_numerals=False)
Transcribes the audio file into text.
"""
def __init__(
self,
model_name: Annotated[str, "Name of the model to load"] = 'large-v3',
device: Annotated[str, "Device to use for model inference"] = 'cpu',
compute_type: Annotated[str, "Data type for model computation, e.g., 'int8' or 'float16'"] = 'int8'
) -> None:
if not isinstance(model_name, str):
raise TypeError("Expected 'model_name' to be of type str")
if not isinstance(device, str):
raise TypeError("Expected 'device' to be of type str")
if not isinstance(compute_type, str):
raise TypeError("Expected 'compute_type' to be of type str")
self.device = device
self.model = faster_whisper.WhisperModel(
model_name, device=device, compute_type=compute_type
)
def transcribe(
self,
audio_path: Annotated[str, "Path to the audio file to transcribe"],
language: Annotated[Optional[str], "Language code for transcription, e.g., 'en' for English"] = None,
suppress_numerals: Annotated[bool, "Whether to suppress numerals in the transcription"] = False
) -> Annotated[Tuple[str, dict], "Transcription text and additional information"]:
"""
Transcribe an audio file into text.
Parameters
----------
audio_path : str
Path to the audio file.
language : str, optional
Language code for transcription (e.g., 'en' for English).
suppress_numerals : bool, optional
Whether to suppress numerals in the transcription. Defaults to False.
Returns
-------
Tuple[str, dict]
The transcribed text and additional transcription metadata.
Examples
--------
>>> transcriber = Transcriber()
>>> text, information = transcriber.transcribe("example.wav")
>>> isinstance(text, str)
True
>>> isinstance(info, dict)
True
"""
if not isinstance(audio_path, str):
raise TypeError("Expected 'audio_path' to be of type str")
if language is not None and not isinstance(language, str):
raise TypeError("Expected 'language' to be of type str if provided")
if not isinstance(suppress_numerals, bool):
raise TypeError("Expected 'suppress_numerals' to be of type bool")
audio_waveform = faster_whisper.decode_audio(audio_path)
suppress_tokens = [-1]
if suppress_numerals:
suppress_tokens = TokenizerUtils.find_numeral_symbol_tokens(
self.model.hf_tokenizer
)
transcript_segments, info = self.model.transcribe(
audio_waveform,
language=language,
suppress_tokens=suppress_tokens,
without_timestamps=True,
vad_filter=True,
log_progress=True,
)
transcript = ''.join(segment.text for segment in transcript_segments)
info = vars(info)
if self.device == 'cuda':
del self.model
torch.cuda.empty_cache()
print(transcript, info)
return transcript, info
class PunctuationRestorer:
"""
A class for restoring punctuation in transcribed text.
Parameters
----------
language : str, optional
Language for punctuation restoration. Defaults to 'en'.
Attributes
----------
language : str
Language used for punctuation restoration.
punct_model : PunctuationModel
Model for predicting punctuation.
supported_languages : List[str]
List of languages supported by the model.
Methods
-------
restore_punctuation(word_speaker_mapping)
Restores punctuation in the provided text based on word mappings.
"""
def __init__(self, language: Annotated[str, "Language for punctuation restoration"] = 'en') -> None:
self.language = language
self.punct_model = PunctuationModel(model="kredor/punctuate-all")
self.supported_languages = [
"en", "fr", "de", "es", "it", "nl", "pt", "bg", "pl", "cs", "sk", "sl",
]
def restore_punctuation(
self, word_speaker_mapping: Annotated[List[Dict], "List of word-speaker mappings"]
) -> Annotated[List[Dict], "Word mappings with restored punctuation"]:
"""
Restore punctuation for transcribed text.
Parameters
----------
word_speaker_mapping : List[Dict]
List of dictionaries containing word and speaker mappings.
Returns
-------
List[Dict]
Updated list with punctuation restored.
Examples
--------
>>> restorer = PunctuationRestorer()
>>> mapping = [{"text": "hello"}, {"text": "world"}]
>>> result = restorer.restore_punctuation(mapping)
>>> isinstance(result, list)
True
>>> "text" in result[0]
True
"""
if self.language not in self.supported_languages:
print(f"Punctuation restoration is not available for {self.language} language.")
return word_speaker_mapping
words_list = [word_dict["text"] for word_dict in word_speaker_mapping]
labeled_words = self.punct_model.predict(words_list)
ending_puncts = ".?!"
model_puncts = ".,;:!?"
is_acronym = lambda x: re.fullmatch(r"\b(?:[a-zA-Z]\.){2,}", x)
for word_dict, labeled_tuple in zip(word_speaker_mapping, labeled_words):
word = word_dict["text"]
if (
word
and labeled_tuple[1] in ending_puncts
and (word[-1] not in model_puncts or is_acronym(word))
):
word += labeled_tuple[1]
word = word.rstrip(".") if word.endswith("..") else word
word_dict["text"] = word
return word_speaker_mapping
if __name__ == "__main__":
sample_audio_path = "sample_audio.wav"
audio_processor_instance = AudioProcessor(sample_audio_path)
mono_audio_path = audio_processor_instance.convert_to_mono()
print(f"Mono audio file saved at: {mono_audio_path}")
audio_duration = audio_processor_instance.get_duration()
print(f"Audio duration: {audio_duration} seconds")
converted_audio_path = audio_processor_instance.change_format("mp3")
print(f"Converted audio file saved at: {converted_audio_path}")
audio_path_trimmed = audio_processor_instance.trim_audio(0.0, 10.0)
print(f"Trimmed audio file saved at: {audio_path_trimmed}")
volume_adjusted_audio_path = audio_processor_instance.adjust_volume(5.0)
print(f"Volume adjusted audio file saved at: {volume_adjusted_audio_path}")
additional_audio_path = "additional_audio.wav"
merged_audio_output_path = audio_processor_instance.merge_audio(additional_audio_path)
print(f"Merged audio file saved at: {merged_audio_output_path}")
audio_chunk_paths = audio_processor_instance.split_audio(10.0)
print(f"Audio chunks saved at: {audio_chunk_paths}")
output_manifest_path = "output_manifest.json"
audio_processor_instance.create_manifest(output_manifest_path)
print(f"Manifest file saved at: {output_manifest_path}")
transcriber_instance = Transcriber()
transcribed_text_output, transcription_metadata = transcriber_instance.transcribe(sample_audio_path)
print(f"Transcribed Text: {transcribed_text_output}")
print(f"Transcription Info: {transcription_metadata}")
word_mapping_example = [
{"text": "hello"},
{"text": "world"},
{"text": "this"},
{"text": "is"},
{"text": "a"},
{"text": "test"}
]
punctuation_restorer_instance = PunctuationRestorer()
punctuation_restored_mapping = punctuation_restorer_instance.restore_punctuation(word_mapping_example)
print(f"Restored Mapping: {punctuation_restored_mapping}")
|