|
import re
|
|
|
|
from g2p_en import G2p
|
|
|
|
from style_bert_vits2.constants import Languages
|
|
from style_bert_vits2.nlp import bert_models
|
|
from style_bert_vits2.nlp.english.cmudict import get_dict
|
|
from style_bert_vits2.nlp.symbols import PUNCTUATIONS, SYMBOLS
|
|
|
|
|
|
|
|
ARPA = {
|
|
"AH0",
|
|
"S",
|
|
"AH1",
|
|
"EY2",
|
|
"AE2",
|
|
"EH0",
|
|
"OW2",
|
|
"UH0",
|
|
"NG",
|
|
"B",
|
|
"G",
|
|
"AY0",
|
|
"M",
|
|
"AA0",
|
|
"F",
|
|
"AO0",
|
|
"ER2",
|
|
"UH1",
|
|
"IY1",
|
|
"AH2",
|
|
"DH",
|
|
"IY0",
|
|
"EY1",
|
|
"IH0",
|
|
"K",
|
|
"N",
|
|
"W",
|
|
"IY2",
|
|
"T",
|
|
"AA1",
|
|
"ER1",
|
|
"EH2",
|
|
"OY0",
|
|
"UH2",
|
|
"UW1",
|
|
"Z",
|
|
"AW2",
|
|
"AW1",
|
|
"V",
|
|
"UW2",
|
|
"AA2",
|
|
"ER",
|
|
"AW0",
|
|
"UW0",
|
|
"R",
|
|
"OW1",
|
|
"EH1",
|
|
"ZH",
|
|
"AE0",
|
|
"IH2",
|
|
"IH",
|
|
"Y",
|
|
"JH",
|
|
"P",
|
|
"AY1",
|
|
"EY0",
|
|
"OY2",
|
|
"TH",
|
|
"HH",
|
|
"D",
|
|
"ER0",
|
|
"CH",
|
|
"AO1",
|
|
"AE1",
|
|
"AO2",
|
|
"OY1",
|
|
"AY2",
|
|
"IH1",
|
|
"OW0",
|
|
"L",
|
|
"SH",
|
|
}
|
|
_g2p = G2p()
|
|
eng_dict = get_dict()
|
|
|
|
|
|
def g2p(text: str) -> tuple[list[str], list[int], list[int]]:
|
|
phones = []
|
|
tones = []
|
|
phone_len = []
|
|
words = __text_to_words(text)
|
|
|
|
for word in words:
|
|
temp_phones, temp_tones = [], []
|
|
if len(word) > 1 and "'" in word:
|
|
word = ["".join(word)]
|
|
|
|
for w in word:
|
|
if w in PUNCTUATIONS:
|
|
temp_phones.append(w)
|
|
temp_tones.append(0)
|
|
continue
|
|
if w.upper() in eng_dict:
|
|
phns, tns = __refine_syllables(eng_dict[w.upper()])
|
|
temp_phones += [__post_replace_ph(i) for i in phns]
|
|
temp_tones += tns
|
|
else:
|
|
phone_list = list(filter(lambda p: p != " ", _g2p(w)))
|
|
phns, tns = [], []
|
|
for ph in phone_list:
|
|
if ph in ARPA:
|
|
ph, tn = __refine_ph(ph)
|
|
phns.append(ph)
|
|
tns.append(tn)
|
|
else:
|
|
phns.append(ph)
|
|
tns.append(0)
|
|
temp_phones += [__post_replace_ph(i) for i in phns]
|
|
temp_tones += tns
|
|
|
|
phones += temp_phones
|
|
tones += temp_tones
|
|
phone_len.append(len(temp_phones))
|
|
|
|
word2ph = []
|
|
for token, pl in zip(words, phone_len):
|
|
word_len = len(token)
|
|
word2ph += __distribute_phone(pl, word_len)
|
|
|
|
phones = ["_"] + phones + ["_"]
|
|
tones = [0] + tones + [0]
|
|
word2ph = [1] + word2ph + [1]
|
|
assert len(phones) == len(tones), text
|
|
assert len(phones) == sum(word2ph), text
|
|
|
|
return phones, tones, word2ph
|
|
|
|
|
|
def __post_replace_ph(ph: str) -> str:
|
|
REPLACE_MAP = {
|
|
":": ",",
|
|
";": ",",
|
|
",": ",",
|
|
"。": ".",
|
|
"!": "!",
|
|
"?": "?",
|
|
"\n": ".",
|
|
"·": ",",
|
|
"、": ",",
|
|
"…": "...",
|
|
"···": "...",
|
|
"・・・": "...",
|
|
"v": "V",
|
|
}
|
|
if ph in REPLACE_MAP:
|
|
ph = REPLACE_MAP[ph]
|
|
if ph in SYMBOLS:
|
|
return ph
|
|
return "UNK"
|
|
|
|
|
|
def __refine_ph(phn: str) -> tuple[str, int]:
|
|
tone = 0
|
|
if re.search(r"\d$", phn):
|
|
tone = int(phn[-1]) + 1
|
|
phn = phn[:-1]
|
|
else:
|
|
tone = 3
|
|
return phn.lower(), tone
|
|
|
|
|
|
def __refine_syllables(syllables: list[list[str]]) -> tuple[list[str], list[int]]:
|
|
tones = []
|
|
phonemes = []
|
|
for phn_list in syllables:
|
|
for phn in phn_list:
|
|
phn, tone = __refine_ph(phn)
|
|
phonemes.append(phn)
|
|
tones.append(tone)
|
|
return phonemes, tones
|
|
|
|
|
|
def __distribute_phone(n_phone: int, n_word: int) -> list[int]:
|
|
phones_per_word = [0] * n_word
|
|
for task in range(n_phone):
|
|
min_tasks = min(phones_per_word)
|
|
min_index = phones_per_word.index(min_tasks)
|
|
phones_per_word[min_index] += 1
|
|
return phones_per_word
|
|
|
|
|
|
def __text_to_words(text: str) -> list[list[str]]:
|
|
tokenizer = bert_models.load_tokenizer(Languages.EN)
|
|
tokens = tokenizer.tokenize(text)
|
|
words = []
|
|
for idx, t in enumerate(tokens):
|
|
if t.startswith("▁"):
|
|
words.append([t[1:]])
|
|
elif t in PUNCTUATIONS:
|
|
if idx == len(tokens) - 1:
|
|
words.append([f"{t}"])
|
|
elif (
|
|
not tokens[idx + 1].startswith("▁")
|
|
and tokens[idx + 1] not in PUNCTUATIONS
|
|
):
|
|
if idx == 0:
|
|
words.append([])
|
|
words[-1].append(f"{t}")
|
|
else:
|
|
words.append([f"{t}"])
|
|
else:
|
|
if idx == 0:
|
|
words.append([])
|
|
words[-1].append(f"{t}")
|
|
return words
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
print(g2p("In this paper, we propose 1 DSPGAN, a GAN-based universal vocoder."))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|