File size: 2,540 Bytes
08e6e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from typing import Optional

import torch

from style_bert_vits2.constants import Languages
from style_bert_vits2.nlp import bert_models


def extract_bert_feature(

    text: str,

    word2ph: list[int],

    device: str,

    assist_text: Optional[str] = None,

    assist_text_weight: float = 0.7,

) -> torch.Tensor:
    """

    ่‹ฑ่ชžใฎใƒ†ใ‚ญใ‚นใƒˆใ‹ใ‚‰ BERT ใฎ็‰นๅพด้‡ใ‚’ๆŠฝๅ‡บใ™ใ‚‹



    Args:

        text (str): ่‹ฑ่ชžใฎใƒ†ใ‚ญใ‚นใƒˆ

        word2ph (list[int]): ๅ…ƒใฎใƒ†ใ‚ญใ‚นใƒˆใฎๅ„ๆ–‡ๅญ—ใซ้Ÿณ็ด ใŒไฝ•ๅ€‹ๅ‰ฒใ‚Šๅฝ“ใฆใ‚‰ใ‚Œใ‚‹ใ‹ใ‚’่กจใ™ใƒชใ‚นใƒˆ

        device (str): ๆŽจ่ซ–ใซๅˆฉ็”จใ™ใ‚‹ใƒ‡ใƒใ‚คใ‚น

        assist_text (Optional[str], optional): ่ฃœๅŠฉใƒ†ใ‚ญใ‚นใƒˆ (ใƒ‡ใƒ•ใ‚ฉใƒซใƒˆ: None)

        assist_text_weight (float, optional): ่ฃœๅŠฉใƒ†ใ‚ญใ‚นใƒˆใฎ้‡ใฟ (ใƒ‡ใƒ•ใ‚ฉใƒซใƒˆ: 0.7)



    Returns:

        torch.Tensor: BERT ใฎ็‰นๅพด้‡

    """

    if device == "cuda" and not torch.cuda.is_available():
        device = "cpu"
    model = bert_models.load_model(Languages.EN).to(device)  # type: ignore

    style_res_mean = None
    with torch.no_grad():
        tokenizer = bert_models.load_tokenizer(Languages.EN)
        inputs = tokenizer(text, return_tensors="pt")
        for i in inputs:
            inputs[i] = inputs[i].to(device)  # type: ignore
        res = model(**inputs, output_hidden_states=True)
        res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
        if assist_text:
            style_inputs = tokenizer(assist_text, return_tensors="pt")
            for i in style_inputs:
                style_inputs[i] = style_inputs[i].to(device)  # type: ignore
            style_res = model(**style_inputs, output_hidden_states=True)
            style_res = torch.cat(style_res["hidden_states"][-3:-2], -1)[0].cpu()
            style_res_mean = style_res.mean(0)

    assert len(word2ph) == res.shape[0], (text, res.shape[0], len(word2ph))
    word2phone = word2ph
    phone_level_feature = []
    for i in range(len(word2phone)):
        if assist_text:
            assert style_res_mean is not None
            repeat_feature = (
                res[i].repeat(word2phone[i], 1) * (1 - assist_text_weight)
                + style_res_mean.repeat(word2phone[i], 1) * assist_text_weight
            )
        else:
            repeat_feature = res[i].repeat(word2phone[i], 1)
        phone_level_feature.append(repeat_feature)

    phone_level_feature = torch.cat(phone_level_feature, dim=0)

    return phone_level_feature.T