File size: 5,918 Bytes
b562cff
 
 
f8211ee
6bd581c
bd4c825
 
6bd581c
fe7e0ce
bd4c825
 
fe7e0ce
6bd581c
bd4c825
b562cff
 
78765d2
 
 
 
bd4c825
5c45105
 
86e9ce9
5c45105
bd4c825
5c45105
 
1ec9f6e
bd4c825
 
1ec9f6e
bd4c825
5c45105
 
 
bd4c825
5c45105
ca824ea
 
 
 
 
43c89dc
ca824ea
0818020
78765d2
 
8cfa550
1ec9f6e
 
bd4c825
1ec9f6e
 
 
 
 
d3f3fad
78765d2
bd4c825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78765d2
bd4c825
 
 
 
 
 
1ec9f6e
 
bd4c825
 
f3da07d
bd4c825
0818020
bd4c825
 
 
 
 
 
 
8cfa550
372f615
6303a96
372f615
 
 
 
 
11c949d
da7c75f
8cfa550
 
6303a96
372f615
 
 
 
 
 
 
 
 
 
 
 
8cfa550
11c949d
bd4c825
1ec9f6e
d9ede2f
11c949d
8cfa550
bd4c825
f3da07d
 
78765d2
f3da07d
bd4c825
3b32f96
1ec9f6e
3b32f96
d3f3fad
fcfee08
98ea928
0818020
 
6efa705
5644512
a5183ea
5b3a79a
a5183ea
5644512
6efa705
29adcdb
6efa705
12f4dbe
 
 
6efa705
29adcdb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import functools, operator

from datetime import date

from typing import Annotated, Any, Dict, List, Optional, Sequence, Tuple, TypedDict, Union

from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import BaseMessage, HumanMessage
from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI

from langgraph.graph import StateGraph, END

class AgentState(TypedDict):
    messages: Annotated[Sequence[BaseMessage], operator.add]
    next: str

def create_agent(llm: ChatOpenAI, tools: list, system_prompt: str):
    prompt = ChatPromptTemplate.from_messages(
        [
            ("system", system_prompt),
            MessagesPlaceholder(variable_name="messages"),
            MessagesPlaceholder(variable_name="agent_scratchpad"),
        ]
    )
    
    agent = create_openai_tools_agent(llm, tools, prompt)
    executor = AgentExecutor(agent=agent, tools=tools)
    
    return executor

def agent_node(state, agent, name):
    result = agent.invoke(state)
    return {"messages": [HumanMessage(content=result["output"], name=name)]}

@tool
def today_tool(text: str) -> str:
    """Returns today's date. Use this for any questions related to knowing today's date. 
       The input should always be an empty string, and this function will always return today's date. 
       Any date mathematics should occur outside this function."""
    return (str(date.today()) + "\n\nIf you have completed all tasks, respond with FINAL ANSWER.")
    
def create_graph(model, max_tokens, temperature, topic):
    tavily_tool = TavilySearchResults(max_results=10)
    
    members = ["Content Planner", "Content Writer"]
    options = ["FINISH"] + members
   
    system_prompt = (
        "You are a Manager tasked with managing a conversation between the "
        "following agent(s): {members}. Given the following user request, "
        "respond with the agent to act next. Each agent will perform a "
        "task and respond with their results and status. When finished, "
        "respond with FINISH."
    )

    function_def = {
        "name": "route",
        "description": "Select the next role.",
        "parameters": {
            "title": "routeSchema",
            "type": "object",
            "properties": {
                "next": {
                    "title": "Next",
                    "anyOf": [
                        {"enum": options},
                    ],
                }
            },
            "required": ["next"],
        },
    }
    
    prompt = ChatPromptTemplate.from_messages(
        [
            ("system", system_prompt),
            MessagesPlaceholder(variable_name="messages"),
            (
                "system",
                "Given the conversation above, who should act next? "
                "Or should we FINISH? Select one of: {options}.",
            ),
        ]
    ).partial(options=str(options), members=", ".join(members))
    
    llm = ChatOpenAI(model=model, max_tokens=max_tokens, temperature=temperature)
    
    supervisor_chain = (
        prompt
        | llm.bind_functions(functions=[function_def], function_call="route")
        | JsonOutputFunctionsParser()
    )

    content_planner_agent = create_agent(llm, [tavily_tool], system_prompt=
                                    "You are a Content Planner working on planning a blog article "
              "about the topic: " + topic + "."
              "You collect information that helps the "
              "audience learn something "
              "and make informed decisions. "
              "Your work is the basis for "
              "the Content Writer to write an article on this topic.")
    content_planner_node = functools.partial(agent_node, agent=content_planner_agent, name="Content Planner")

    content_writer_agent = create_agent(llm, [today_tool], system_prompt=
                                    "You are a Content Writer working on writing "
              "a new opinion piece about the topic: " + topic + ". "
              "You base your writing on the work of "
              "the Content Planner, who provides an outline "
              "and relevant context about the topic. "
              "You follow the main objectives and "
              "direction of the outline, "
              "as provide by the Content Planner. "
              "You also provide objective and impartial insights "
              "and back them up with information "
              "provide by the Content Planner. "
              "You acknowledge in your opinion piece "
              "when your statements are opinions "
              "as opposed to objective statements.")
    content_writer_node = functools.partial(agent_node, agent=content_writer_agent, name="Content Writer")
    
    workflow = StateGraph(AgentState)

    workflow.add_node("Manager", supervisor_chain)
    workflow.add_node("Content Planner", content_planner_node)
    workflow.add_node("Content Writer", content_writer_node)

    for member in members:
        workflow.add_edge(member, "Manager")

    conditional_map = {k: k for k in members}
    conditional_map["FINISH"] = END
    workflow.add_conditional_edges("Manager", lambda x: x["next"], conditional_map)
    
    workflow.set_entry_point("Manager")
    
    return workflow.compile()

def run_multi_agent(llm, max_tokens, temperature, topic):
    graph = create_graph(llm, max_tokens, temperature, topic)
    
    result = graph.invoke({
        "messages": [
            HumanMessage(content=topic)
        ]
    })
    
    article = result['messages'][-1].content
    
    print("===")
    print(article)
    print("===")
    
    return article