Spaces:
Runtime error
Runtime error
File size: 27,048 Bytes
35787a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
<p align="center">
<img src="https://github.com/DAMO-NLP-SG/VideoLLaMA2/blob/e7bc34e0e9a96d77947a75b54399d9f96ccf209d/assets/logo.png" width="150" style="margin-bottom: 0.2;"/>
<p>
<h3 align="center"><a href="https://arxiv.org/abs/2406.07476" style="color:#9C276A">
VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs</a></h3>
<h5 align="center"> If our project helps you, please give us a star β on GitHub to support us. ππ </h2>
<h5 align="center">
[](https://huggingface.co/spaces/lixin4ever/VideoLLaMA2-AV)
[](https://huggingface.co/spaces/lixin4ever/VideoLLaMA2)
[](https://huggingface.co/collections/DAMO-NLP-SG/videollama-2-6669b6b6f0493188305c87ed)
[](https://huggingface.co/datasets/DAMO-NLP-SG/Multi-Source-Video-Captioning) <br>
[](https://github.com/DAMO-NLP-SG/VideoLLaMA2/blob/main/LICENSE)
[](https://hits.seeyoufarm.com)
[](https://github.com/DAMO-NLP-SG/VideoLLaMA2/issues?q=is%3Aopen+is%3Aissue)
[](https://github.com/DAMO-NLP-SG/VideoLLaMA2/issues?q=is%3Aissue+is%3Aclosed) <br>
[](https://huggingface.co/papers/2406.07476)
[](https://arxiv.org/abs/2406.07476) <br>
</h5>
[](https://paperswithcode.com/sota/zero-shot-video-question-answer-on-egoschema-1?p=videollama-2-advancing-spatial-temporal) <br>
[](https://paperswithcode.com/sota/video-question-answering-on-perception-test?p=videollama-2-advancing-spatial-temporal) <br>
[](https://paperswithcode.com/sota/video-question-answering-on-mvbench?p=videollama-2-advancing-spatial-temporal) <br>
[](https://paperswithcode.com/sota/zero-shot-video-question-answer-on-video-mme-1?p=videollama-2-advancing-spatial-temporal) <br>
[](https://paperswithcode.com/sota/zero-shot-video-question-answer-on-video-mme?p=videollama-2-advancing-spatial-temporal) <br>
<details open><summary>π‘ Some other multimodal-LLM projects from our team may interest you β¨. </summary><p>
<!-- may -->
> [**VideoLLaMA 3: Frontier Multimodal Foundation Models for Image and Video Understanding**](https://github.com/DAMO-NLP-SG/VideoLLaMA3) <br>
> Boqiang Zhang<sup>* </sup>, Kehan Li<sup>* </sup>, Zesen Cheng<sup>* </sup>, Zhiqiang Hu<sup>* </sup>, Yuqian Yuan<sup>* </sup>, Guanzheng Chen<sup>* </sup>, Sicong Leng<sup>* </sup>, Yuming Jiang<sup>* </sup>, Hang Zhang<sup>* </sup>, Xin Li<sup>* </sup>, Peng Jin, Wenqi Zhang, Fan Wang, Lidong Bing, Deli Zhao <br>
[](https://github.com/DAMO-NLP-SG/VideoLLaMA3) [](https://github.com/DAMO-NLP-SG/VideoLLaMA3) [](https://arxiv.org/abs/2501.13106) <br>
> [**Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding**](https://github.com/DAMO-NLP-SG/Video-LLaMA) <br>
> Hang Zhang, Xin Li, Lidong Bing <br>
[](https://github.com/DAMO-NLP-SG/Video-LLaMA) [](https://github.com/DAMO-NLP-SG/Video-LLaMA) [](https://arxiv.org/abs/2306.02858) <br>
> [**VCD: Mitigating Object Hallucinations in Large Vision-Language Models through Visual Contrastive Decoding**](https://arxiv.org/abs/2311.16922) <br>
> Sicong Leng<sup>* </sup>, Hang Zhang<sup>* </sup>, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, Lidong Bing <br>
[](https://github.com/DAMO-NLP-SG/VCD) [](https://github.com/DAMO-NLP-SG/VCD) [](https://arxiv.org/abs/2311.16922) <br>
> [**The Curse of Multi-Modalities: Evaluating Hallucinations of Large Multimodal Models across Language, Visual, and Audio**](https://arxiv.org/abs/2410.12787) <br>
> Sicong Leng, Yun Xing, Zesen Cheng, Yang Zhou, Hang Zhang, Xin Li, Deli Zhao, Shijian Lu, Chunyan Miao, Lidong Bing <br>
[](https://github.com/DAMO-NLP-SG/CMM) [](https://github.com/DAMO-NLP-SG/CMM) [](https://arxiv.org/abs/2410.12787) <br>
> [**Breaking the Memory Barrier: Near Infinite Batch Size Scaling for Contrastive Loss**](https://arxiv.org/abs/2410.17243) <br>
> Zesen Cheng*, Hang Zhang*, Kehan Li*, Sicong Leng, Zhiqiang Hu, Fei Wu, Deli Zhao, Xin Li, Lidong Bing <br>
[](https://github.com/DAMO-NLP-SG/Inf-CLIP) [](https://github.com/DAMO-NLP-SG/Inf-CLIP) [](https://arxiv.org/abs/2410.17243) <br>
</p></details>
<div align="center"><video src="https://github.com/DAMO-NLP-SG/VideoLLaMA2/assets/18526640/e0e7951c-f392-42ed-afad-b2c7984d3e38" width="800"></div>
## π° News
* **[2025.01.21]** ππ We are excited to officially launch [VideoLLaMA3](https://github.com/DAMO-NLP-SG/VideoLLaMA3), featuring enhanced performance across image and video benchmarks, along with a variety of easy-to-follow inference cookbooks. Try it out today!
* **[2024.10.22]** Release checkpoints of [VideoLLaMA2.1-7B-AV](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2.1-7B-AV). The audio_visual branch code can be seen here: https://github.com/DAMO-NLP-SG/VideoLLaMA2/tree/audio_visual.
* **[2024.10.15]** Release checkpoints of [VideoLLaMA2.1-7B-16F-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2.1-7B-16F-Base) and [VideoLLaMA2.1-7B-16F](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2.1-7B-16F).
* **[2024.08.14]** Release checkpoints of [VideoLLaMA2-72B-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-72B-Base) and [VideoLLaMA2-72B](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-72B).
* **[2024.07.30]** Release checkpoints of [VideoLLaMA2-8x7B-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-8x7B-Base) and [VideoLLaMA2-8x7B](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-8x7B).
* **[2024.06.25]** π₯π₯ As of Jun 25, our [VideoLLaMA2-7B-16F](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-7B-16F) is the **Top-1** ~7B-sized VideoLLM on the [MLVU Leaderboard](https://github.com/JUNJIE99/MLVU?tab=readme-ov-file#trophy-mini-leaderboard).
* **[2024.06.18]** π₯π₯ As of Jun 18, our [VideoLLaMA2-7B-16F](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-7B-16F) is the **Top-1** ~7B-sized VideoLLM on the [VideoMME Leaderboard](https://video-mme.github.io/home_page.html#leaderboard).
* **[2024.06.17]** ππ Update technical report with the latest results and the missing references. If you have works closely related to VideoLLaMA 2 but not mentioned in the paper, feel free to let us know.
* **[2024.06.14]** π₯π₯ [Online Demo](https://huggingface.co/spaces/lixin4ever/VideoLLaMA2) is available.
* **[2024.06.03]** Release training, evaluation, and serving codes of VideoLLaMA 2.
<img src="https://github.com/DAMO-NLP-SG/VideoLLaMA2/assets/18526640/b9faf24f-bdd2-4728-9385-acea17ea086d" width="800" />
## π οΈ Requirements and Installation
Basic Dependencies:
* Python >= 3.8
* Pytorch >= 2.2.0
* CUDA Version >= 11.8
* transformers == 4.40.0 (for reproducing paper results)
* tokenizers == 0.19.1
**[Online Mode]** Install required packages (better for development):
```bash
git clone https://github.com/DAMO-NLP-SG/VideoLLaMA2
cd VideoLLaMA2
pip install -r requirements.txt
pip install flash-attn==2.5.8 --no-build-isolation
```
**[Offline Mode]** Install VideoLLaMA2 as a Python package (better for direct use):
```bash
git clone https://github.com/DAMO-NLP-SG/VideoLLaMA2
cd VideoLLaMA2
pip install --upgrade pip # enable PEP 660 support
pip install -e .
pip install flash-attn==2.5.8 --no-build-isolation
```
## π Main Results
### Multi-Choice Video QA & Video Captioning
<p><img src="https://github.com/user-attachments/assets/e87fe4cf-07ea-4fde-998b-a0c63671c3b4" width="800" "/></p>
### Open-Ended Video QA
<p><img src="https://github.com/user-attachments/assets/80b16c04-75ac-43b8-bc22-6952fdf994bb" width="800" "/></p>
### Audio QA
<p><img src="https://github.com/user-attachments/assets/46e55952-5a54-4564-bcd4-cfa4edd7f36a" width="800" "/></p>
### Audio-Visual QA
<p><img src="https://github.com/user-attachments/assets/8114c1e3-7f93-401b-9ea6-9ce7c96d7b05" width="800" "/></p>
## :earth_americas: Model Zoo
### Vision-only Checkpoints
| Model Name | Model Type | Visual Encoder | Language Decoder | # Training Frames |
|:----------------|:------------:|:----------------|:------------------|:----------------:|
| [VideoLLaMA2-7B-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-7B-Base) | Base | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | 8 |
| [VideoLLaMA2-7B](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-7B) | Chat | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | 8 |
| [VideoLLaMA2-7B-16F-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-7B-16F-Base) | Base | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | 16 |
| [VideoLLaMA2-7B-16F](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-7B-16F) | Chat | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | 16 |
| [VideoLLaMA2-8x7B-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-8x7B-Base) | Base | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) | 8 |
| [VideoLLaMA2-8x7B](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-8x7B) | Chat | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) | 8 |
| [VideoLLaMA2-72B-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-72B-Base) | Base | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct) | 8 |
| [VideoLLaMA2-72B](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-72B) | Chat | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct) | 8 |
| [VideoLLaMA2.1-7B-16F-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2.1-7B-16F-Base) | Base | [siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) | [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) | 16 |
| [VideoLLaMA2.1-7B-16F](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2.1-7B-16F) | Chat | [siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) | [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) | 16 |
### Audio-Visual Checkpoints
| Model Name | Type | Audio Encoder | Language Decoder |
|:-------------------|:----------------|:----------------|:------------------|
| [VideoLLaMA2.1-7B-AV](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2.1-7B-AV) | Chat | [Fine-tuned BEATs_iter3+(AS2M)(cpt2)](https://1drv.ms/u/s!AqeByhGUtINrgcpj8ujXH1YUtxooEg?e=E9Ncea) | [VideoLLaMA2.1-7B-16F](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2.1-7B-16F) |
## [π€ Demo](https://huggingface.co/spaces/lixin4ever/VideoLLaMA2)
It is highly recommended to try our [online demo](https://huggingface.co/spaces/lixin4ever/VideoLLaMA2) first.
To run a video-based LLM (Large Language Model) web demonstration on your device, you will first need to ensure that you have the necessary model checkpoints prepared, followed by adhering to the steps outlined to successfully launch the demo.
### Single-model Version
* Launch a gradio app directly ([VideoLLaMA2-7B](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-7B) is adopted by default):
```bash
python videollama2/serve/gradio_web_server_adhoc.py
```
### Multiple-model Version
1. Launch a global controller
```bash
cd /path/to/VideoLLaMA2
python -m videollama2.serve.controller --host 0.0.0.0 --port 10000
```
2. Launch a gradio webserver
```bash
python -m videollama2.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload
```
3. Launch one or multiple model workers
```bash
# export HF_ENDPOINT=https://hf-mirror.com # If you are unable to access Hugging Face, try to uncomment this line.
python -m videollama2.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path /PATH/TO/MODEL1
python -m videollama2.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40001 --worker http://localhost:40001 --model-path /PATH/TO/MODEL2
python -m videollama2.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40002 --worker http://localhost:40002 --model-path /PATH/TO/MODEL3
...
```
## ποΈ Training & Evaluation
### Quick Start
To facilitate further development on top of our codebase, we provide a quick-start guide on how to train a customized [VideoLLaMA2](https://github.com/DAMO-NLP-SG/VideoLLaMA2) with [VideoLLaVA](https://github.com/PKU-YuanGroup/Video-LLaVA) dataset and evaluate the trained model on the mainstream video-llm benchmarks.
1. Training Data Structure:
```bash
VideoLLaMA2
βββ datasets
β βββ videollava_pt
| | βββ llava_image/ # Available at: https://pan.baidu.com/s/17GYcE69FcJjjUM0e4Gad2w?pwd=9ga3 or https://drive.google.com/drive/folders/1QmFj2FcMAoWNCUyiUtdcW0-IOhLbOBcf?usp=drive_link
| | βββ valley/ # Available at: https://pan.baidu.com/s/1jluOimE7mmihEBfnpwwCew?pwd=jyjz or https://drive.google.com/drive/folders/1QmFj2FcMAoWNCUyiUtdcW0-IOhLbOBcf?usp=drive_link
| | βββ valley_llavaimage.json # Available at: https://drive.google.com/file/d/1zGRyVSUMoczGq6cjQFmT0prH67bu2wXD/view, including 703K video-text and 558K image-text pairs
β βββ videollava_sft
| | βββ llava_image_tune/ # Available at: https://pan.baidu.com/s/1l-jT6t_DlN5DTklwArsqGw?pwd=o6ko
| | βββ videochatgpt_tune/ # Available at: https://pan.baidu.com/s/10hJ_U7wVmYTUo75YHc_n8g?pwd=g1hf
| | βββ videochatgpt_llavaimage_tune.json # Available at: https://drive.google.com/file/d/1zGRyVSUMoczGq6cjQFmT0prH67bu2wXD/view, including 100K video-centric, 625K image-centric and 40K text-only conversations
```
2. Command:
```bash
# VideoLLaMA2-vllava pretraining
bash scripts/vllava/pretrain.sh
# VideoLLaMA2-vllava finetuning
bash scripts/vllava/finetune.sh
```
3. Evaluation Data Structure:
```bash
VideoLLaMA2
βββ eval
β βββ egoschema # Official website: https://github.com/egoschema/EgoSchema
| | βββ good_clips_git/ # Available at: https://drive.google.com/drive/folders/1SS0VVz8rML1e5gWq7D7VtP1oxE2UtmhQ
| | βββ questions.json # Available at: https://github.com/egoschema/EgoSchema/blob/main/questions.json
β βββ mvbench # Official website: https://huggingface.co/datasets/OpenGVLab/MVBench
| | βββ video/
| | | βββ clever/
| | | βββ ...
| | βββ json/
| | | βββ action_antonym.json
| | | βββ ...
β βββ perception_test_mcqa # Official website: https://huggingface.co/datasets/OpenGVLab/MVBench
| | βββ videos/ # Available at: https://storage.googleapis.com/dm-perception-test/zip_data/test_videos.zip
| | βββ mc_question_test.json # Download from https://storage.googleapis.com/dm-perception-test/zip_data/mc_question_test_annotations.zip
β βββ videomme # Official website: https://video-mme.github.io/home_page.html#leaderboard
| | βββ test-00000-of-00001.parquet
| | βββ videos/
| | βββ subtitles/
β βββ Activitynet_Zero_Shot_QA # Official website: https://github.com/MILVLG/activitynet-qa
| | βββ all_test/ # Available at: https://mbzuaiac-my.sharepoint.com/:u:/g/personal/hanoona_bangalath_mbzuai_ac_ae/EatOpE7j68tLm2XAd0u6b8ABGGdVAwLMN6rqlDGM_DwhVA?e=90WIuW
| | βββ test_q.json # Available at: https://github.com/MILVLG/activitynet-qa/tree/master/dataset
| | βββ test_a.json # Available at: https://github.com/MILVLG/activitynet-qa/tree/master/dataset
β βββ MSVD_Zero_Shot_QA # Official website: https://github.com/xudejing/video-question-answering
| | βββ videos/
| | βββ test_q.json
| | βββ test_a.json
β βββ videochatgpt_gen # Official website: https://github.com/mbzuai-oryx/Video-ChatGPT/tree/main/quantitative_evaluation
| | βββ Test_Videos/ # Available at: https://mbzuaiac-my.sharepoint.com/:u:/g/personal/hanoona_bangalath_mbzuai_ac_ae/EatOpE7j68tLm2XAd0u6b8ABGGdVAwLMN6rqlDGM_DwhVA?e=90WIuW
| | βββ Test_Human_Annotated_Captions/ # Available at: https://mbzuaiac-my.sharepoint.com/personal/hanoona_bangalath_mbzuai_ac_ae/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fhanoona%5Fbangalath%5Fmbzuai%5Fac%5Fae%2FDocuments%2FVideo%2DChatGPT%2FData%5FCode%5FModel%5FRelease%2FQuantitative%5FEvaluation%2Fbenchamarking%2FTest%5FHuman%5FAnnotated%5FCaptions%2Ezip&parent=%2Fpersonal%2Fhanoona%5Fbangalath%5Fmbzuai%5Fac%5Fae%2FDocuments%2FVideo%2DChatGPT%2FData%5FCode%5FModel%5FRelease%2FQuantitative%5FEvaluation%2Fbenchamarking&ga=1
| | βββ generic_qa.json # These three json files available at: https://mbzuaiac-my.sharepoint.com/personal/hanoona_bangalath_mbzuai_ac_ae/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fhanoona%5Fbangalath%5Fmbzuai%5Fac%5Fae%2FDocuments%2FVideo%2DChatGPT%2FData%5FCode%5FModel%5FRelease%2FQuantitative%5FEvaluation%2Fbenchamarking%2FBenchmarking%5FQA&ga=1
| | βββ temporal_qa.json
| | βββ consistency_qa.json
```
4. Command:
```bash
# mvbench evaluation
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash scripts/eval/eval_video_qa_mvbench.sh
# activitynet-qa evaluation (need to set azure openai key/endpoint/deployname)
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash scripts/eval/eval_video_qa_mvbench.sh
```
### Data Format
If you want to train a video-llm on your data, you need to follow the procedures below to prepare the video/image sft data:
1. Suppose your data structure is like:
```bash
VideoLLaMA2
βββ datasets
β βββ custom_sft
β | βββ images
β | βββ videos
| | βββ custom.json
```
2. Then you should re-organize the annotated video/image sft data according to the following format:
```json
[
{
"id": 0,
"video": "images/xxx.jpg",
"conversations": [
{
"from": "human",
"value": "<image>\nWhat are the colors of the bus in the image?"
},
{
"from": "gpt",
"value": "The bus in the image is white and red."
},
...
],
}
{
"id": 1,
"video": "videos/xxx.mp4",
"conversations": [
{
"from": "human",
"value": "<video>\nWhat are the main activities that take place in the video?"
},
{
"from": "gpt",
"value": "The main activities that take place in the video are the preparation of camera equipment by a man, a group of men riding a helicopter, and a man sailing a boat through the water."
},
...
],
},
...
]
```
3. Modify the `scripts/custom/finetune.sh`:
```bash
...
--data_path datasets/custom_sft/custom.json
--data_folder datasets/custom_sft/
--pretrain_mm_mlp_adapter CONNECTOR_DOWNLOAD_PATH (e.g., DAMO-NLP-SG/VideoLLaMA2.1-7B-16F-Base)
...
```
## π€ Inference
Video/Image Inference:
```python
import sys
sys.path.append('./')
from videollama2 import model_init, mm_infer
from videollama2.utils import disable_torch_init
def inference():
disable_torch_init()
# Video Inference
modal = 'video'
modal_path = 'assets/cat_and_chicken.mp4'
instruct = 'What animals are in the video, what are they doing, and how does the video feel?'
# Reply:
# The video features a kitten and a baby chick playing together. The kitten is seen laying on the floor while the baby chick hops around. The two animals interact playfully with each other, and the video has a cute and heartwarming feel to it.
# Image Inference
modal = 'image'
modal_path = 'assets/sora.png'
instruct = 'What is the woman wearing, what is she doing, and how does the image feel?'
# Reply:
# The woman in the image is wearing a black coat and sunglasses, and she is walking down a rain-soaked city street. The image feels vibrant and lively, with the bright city lights reflecting off the wet pavement, creating a visually appealing atmosphere. The woman's presence adds a sense of style and confidence to the scene, as she navigates the bustling urban environment.
model_path = 'DAMO-NLP-SG/VideoLLaMA2.1-7B-16F'
# Base model inference (only need to replace model_path)
# model_path = 'DAMO-NLP-SG/VideoLLaMA2.1-7B-16F-Base'
model, processor, tokenizer = model_init(model_path)
output = mm_infer(processor[modal](modal_path), instruct, model=model, tokenizer=tokenizer, do_sample=False, modal=modal)
print(output)
if __name__ == "__main__":
inference()
```
## π Citation
If you find VideoLLaMA useful for your research and applications, please cite using this BibTeX:
```bibtex
@article{damonlpsg2024videollama2,
title={VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs},
author={Cheng, Zesen and Leng, Sicong and Zhang, Hang and Xin, Yifei and Li, Xin and Chen, Guanzheng and Zhu, Yongxin and Zhang, Wenqi and Luo, Ziyang and Zhao, Deli and Bing, Lidong},
journal={arXiv preprint arXiv:2406.07476},
year={2024},
url = {https://arxiv.org/abs/2406.07476}
}
@article{damonlpsg2023videollama,
title = {Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding},
author = {Zhang, Hang and Li, Xin and Bing, Lidong},
journal = {arXiv preprint arXiv:2306.02858},
year = {2023},
url = {https://arxiv.org/abs/2306.02858}
}
```
## π Acknowledgement
The codebase of VideoLLaMA 2 is adapted from [**LLaVA 1.5**](https:github.com/haotian-liu/LLaVA) and [**FastChat**](https://github.com/lm-sys/FastChat). We are also grateful for the following projects our VideoLLaMA 2 arise from:
* [**LLaMA 2**](https://github.com/meta-llama/llama), [**Mistral-7B**](https://mistral.ai/news/announcing-mistral-7b/), [**OpenAI CLIP**](https://openai.com/index/clip/), [**Qwen2**](https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f), [**SigLIP**](https://huggingface.co/collections/google/siglip-659d5e62f0ae1a57ae0e83ba), [**Honeybee**](https://github.com/kakaobrain/honeybee).
* [**Video-ChatGPT**](https://github.com/mbzuai-oryx/Video-ChatGPT), [**Video-LLaVA**](https://github.com/PKU-YuanGroup/Video-LLaVA).
* [**WebVid**](https://github.com/m-bain/webvid), [**Panda-70M**](https://github.com/snap-research/Panda-70M), [**LanguageBind**](https://github.com/PKU-YuanGroup/LanguageBind), [**InternVid**](https://github.com/OpenGVLab/InternVideo/tree/main/Data/InternVid).
* [**VideoChat2**](https://github.com/OpenGVLab/Ask-Anything/tree/main/video_chat2), [**Valley**](https://github.com/RupertLuo/Valley), [**VTimeLLM**](https://github.com/huangb23/VTimeLLM), [**ShareGPT4V**](https://sharegpt4v.github.io/).
* [**Magpie**](https://github.com/magpie-align/magpie), [**ALLaVA**](https://github.com/FreedomIntelligence/ALLaVA), [**AVInstruct**](https://github.com/rikeilong/Bay-CAT/tree/main/AVinstruct).
## π License
This project is released under the Apache 2.0 license as found in the LICENSE file.
The service is a research preview intended for **non-commercial use ONLY**, subject to the model Licenses of LLaMA and Mistral, Terms of Use of the data generated by OpenAI, and Privacy Practices of ShareGPT. Please get in touch with us if you find any potential violations.
|