import torch from torchvision import transforms from PIL import Image import gradio as gr import json from torchvision.models import efficientnet_b7, EfficientNet_B7_Weights import torch.nn as nn # Charger les noms des classes with open("class_names.json", "r") as f: class_names = json.load(f) # Charger l'architecture et les poids du modèle device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Charger EfficientNet-B7 avec des poids pré-entraînés weights = EfficientNet_B7_Weights.DEFAULT base_model = efficientnet_b7(weights=weights) # Adapter le modèle pour la classification (ajout d'une couche FC finale) class CustomEfficientNet(nn.Module): def __init__(self, base_model, num_classes): super(CustomEfficientNet, self).__init__() self.base = nn.Sequential(*list(base_model.children())[:-2]) # Couper la partie classification self.global_avg_pool = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Linear(2560, 512) # Taille de sortie du dernier bloc self.relu = nn.ReLU() self.fc2 = nn.Linear(512, num_classes) # Nombre de classes pour la classification def forward(self, x): x = self.base(x) x = self.global_avg_pool(x) x = x.view(x.size(0), -1) x = self.relu(self.fc1(x)) x = self.fc2(x) return x # Initialiser le modèle avec 3 classes (ajuste ce nombre selon ton cas) num_classes = len(class_names) # Nombre de classes dans le fichier JSON model = CustomEfficientNet(base_model, num_classes).to(device) # Charger les poids dans le modèle model.load_state_dict(torch.load("efficientnet_b7_best.pth", map_location=device)) model.eval() # Passer le modèle en mode évaluation # Définir la taille de l'image image_size = (224, 224) # Transformation pour l'image class GrayscaleToRGB: def __call__(self, img): return img.convert("RGB") valid_test_transforms = transforms.Compose([ transforms.Grayscale(num_output_channels=1), transforms.Resize(image_size), GrayscaleToRGB(), # Conversion en RGB transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) # Fonction de prédiction def predict_image(image): image_tensor = valid_test_transforms(image).unsqueeze(0).to(device) with torch.no_grad(): outputs = model(image_tensor) _, predicted_class = torch.max(outputs, 1) predicted_label = class_names[predicted_class.item()] return predicted_label # Interface Gradio interface = gr.Interface( fn=predict_image, inputs=gr.Image(type="pil"), outputs="text", title="Prédiction d'images avec PyTorch", description="Chargez une image pour obtenir une prédiction de classe." ) if __name__ == "__main__": interface.launch()