File size: 2,784 Bytes
06c11b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch
from torchvision import transforms
from PIL import Image
import gradio as gr
import json
from torchvision.models import efficientnet_b7, EfficientNet_B7_Weights
import torch.nn as nn

# Charger les noms des classes
with open("class_names.json", "r") as f:
    class_names = json.load(f)

# Charger l'architecture et les poids du modèle
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Charger EfficientNet-B7 avec des poids pré-entraînés
weights = EfficientNet_B7_Weights.DEFAULT
base_model = efficientnet_b7(weights=weights)

# Adapter le modèle pour la classification (ajout d'une couche FC finale)
class CustomEfficientNet(nn.Module):
    def __init__(self, base_model, num_classes):
        super(CustomEfficientNet, self).__init__()
        self.base = nn.Sequential(*list(base_model.children())[:-2])  # Couper la partie classification
        self.global_avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc1 = nn.Linear(2560, 512)  # Taille de sortie du dernier bloc
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(512, num_classes)  # Nombre de classes pour la classification

    def forward(self, x):
        x = self.base(x)
        x = self.global_avg_pool(x)
        x = x.view(x.size(0), -1)
        x = self.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# Initialiser le modèle avec 3 classes (ajuste ce nombre selon ton cas)
num_classes = len(class_names)  # Nombre de classes dans le fichier JSON
model = CustomEfficientNet(base_model, num_classes).to(device)

# Charger les poids dans le modèle
model.load_state_dict(torch.load("efficientnet_b7_best.pth", map_location=device))
model.eval()  # Passer le modèle en mode évaluation

# Définir la taille de l'image
image_size = (224, 224)

# Transformation pour l'image
class GrayscaleToRGB:
    def __call__(self, img):
        return img.convert("RGB")

valid_test_transforms = transforms.Compose([
    transforms.Grayscale(num_output_channels=1),
    transforms.Resize(image_size),
    GrayscaleToRGB(),  # Conversion en RGB
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])

# Fonction de prédiction
def predict_image(image):
    image_tensor = valid_test_transforms(image).unsqueeze(0).to(device)
    with torch.no_grad():
        outputs = model(image_tensor)
        _, predicted_class = torch.max(outputs, 1)
    predicted_label = class_names[predicted_class.item()]
    return predicted_label

# Interface Gradio
interface = gr.Interface(
    fn=predict_image,
    inputs=gr.Image(type="pil"),
    outputs="text",
    title="Prédiction d'images avec PyTorch",
    description="Chargez une image pour obtenir une prédiction de classe."
)

if __name__ == "__main__":
    interface.launch()