import torch from torchvision import transforms from PIL import Image import json import streamlit as st # Charger les noms des classes with open("class_names.json", "r") as f: class_names = json.load(f) # Charger le modèle device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = torch.load("efficientnet_b7_best.pth", map_location=device) model.eval() # Mode évaluation # Définir la taille de l'image image_size = (224, 224) # Transformation pour l'image class GrayscaleToRGB: def __call__(self, img): return img.convert("RGB") valid_test_transforms = transforms.Compose([ transforms.Grayscale(num_output_channels=1), transforms.Resize(image_size), GrayscaleToRGB(), # Conversion en RGB transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) # Fonction de prédiction def predict_image(image): image_tensor = valid_test_transforms(image).unsqueeze(0).to(device) with torch.no_grad(): outputs = model(image_tensor) _, predicted_class = torch.max(outputs, 1) predicted_label = class_names[predicted_class.item()] return predicted_label # Interface Streamlit st.title("Prédiction d'images avec PyTorch") st.write("Chargez une image pour obtenir une prédiction de classe.") uploaded_image = st.file_uploader("Téléchargez une image", type=["jpg", "jpeg", "png"]) if uploaded_image is not None: image = Image.open(uploaded_image) st.image(image, caption="Image téléchargée", use_column_width=True) predicted_label = predict_image(image) st.write(f"Prédiction de la classe : {predicted_label}")