ankigen / app.py
brickfrog's picture
Upload folder using huggingface_hub
d6f5eba verified
from openai import OpenAI
from pydantic import BaseModel
from typing import List, Optional
import gradio as gr
import os
import logging
from logging.handlers import RotatingFileHandler
import sys
from functools import lru_cache
from tenacity import (
retry,
stop_after_attempt,
wait_exponential,
retry_if_exception_type,
)
import hashlib
import genanki
import random
import json
import tempfile
from pathlib import Path
import pandas as pd
import requests
from bs4 import BeautifulSoup
class Step(BaseModel):
explanation: str
output: str
class Subtopics(BaseModel):
steps: List[Step]
result: List[str]
class Topics(BaseModel):
result: List[Subtopics]
class CardFront(BaseModel):
question: Optional[str] = None
class CardBack(BaseModel):
answer: Optional[str] = None
explanation: str
example: str
class Card(BaseModel):
front: CardFront
back: CardBack
metadata: Optional[dict] = None
card_type: str = "basic" # Add card_type, default to basic
class CardList(BaseModel):
topic: str
cards: List[Card]
class ConceptBreakdown(BaseModel):
main_concept: str
prerequisites: List[str]
learning_outcomes: List[str]
common_misconceptions: List[str]
difficulty_level: str # "beginner", "intermediate", "advanced"
class CardGeneration(BaseModel):
concept: str
thought_process: str
verification_steps: List[str]
card: Card
class LearningSequence(BaseModel):
topic: str
concepts: List[ConceptBreakdown]
cards: List[CardGeneration]
suggested_study_order: List[str]
review_recommendations: List[str]
def setup_logging():
"""Configure logging to both file and console"""
logger = logging.getLogger("ankigen")
logger.setLevel(logging.DEBUG)
# Create formatters
detailed_formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
simple_formatter = logging.Formatter("%(levelname)s: %(message)s")
# File handler (detailed logging)
file_handler = RotatingFileHandler(
"ankigen.log",
maxBytes=1024 * 1024, # 1MB
backupCount=5,
)
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(detailed_formatter)
# Console handler (info and above)
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(simple_formatter)
# Add handlers to logger
logger.addHandler(file_handler)
logger.addHandler(console_handler)
return logger
# Initialize logger
logger = setup_logging()
# Replace the caching implementation with a proper cache dictionary
_response_cache = {} # Global cache dictionary
@lru_cache(maxsize=100)
def get_cached_response(cache_key: str):
"""Get response from cache"""
return _response_cache.get(cache_key)
def set_cached_response(cache_key: str, response):
"""Set response in cache"""
_response_cache[cache_key] = response
def create_cache_key(prompt: str, model: str) -> str:
"""Create a unique cache key for the API request"""
return hashlib.md5(f"{model}:{prompt}".encode()).hexdigest()
# Add retry decorator for API calls
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type(Exception),
before_sleep=lambda retry_state: logger.warning(
f"Retrying API call (attempt {retry_state.attempt_number})"
),
)
def structured_output_completion(
client, model, response_format, system_prompt, user_prompt
):
"""Make API call with retry logic and caching"""
cache_key = create_cache_key(f"{system_prompt}:{user_prompt}", model)
cached_response = get_cached_response(cache_key)
if cached_response is not None:
logger.info("Using cached response")
return cached_response
try:
logger.debug(f"Making API call with model {model}")
# Add JSON instruction to system prompt
system_prompt = f"{system_prompt}\nProvide your response as a JSON object matching the specified schema."
completion = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": system_prompt.strip()},
{"role": "user", "content": user_prompt.strip()},
],
response_format={"type": "json_object"},
temperature=0.7,
)
if not hasattr(completion, "choices") or not completion.choices:
logger.warning("No choices returned in the completion.")
return None
first_choice = completion.choices[0]
if not hasattr(first_choice, "message"):
logger.warning("No message found in the first choice.")
return None
# Parse the JSON response
result = json.loads(first_choice.message.content)
# Cache the successful response
set_cached_response(cache_key, result)
return result
except Exception as e:
logger.error(f"API call failed: {str(e)}", exc_info=True)
raise
def fetch_webpage_text(url: str) -> str:
"""Fetches and extracts main text content from a URL."""
try:
logger.info(f"Fetching content from URL: {url}")
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
}
response = requests.get(url, headers=headers, timeout=15) # Added timeout
response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
logger.debug(f"Parsing HTML content for {url}")
# Use lxml for speed if available, fallback to html.parser
try:
soup = BeautifulSoup(response.text, "lxml")
except ImportError:
logger.warning("lxml not found, using html.parser instead.")
soup = BeautifulSoup(response.text, "html.parser")
# Remove script and style elements
for script_or_style in soup(["script", "style"]):
script_or_style.extract()
# Attempt to find main content tags
main_content = soup.find("main")
if not main_content:
main_content = soup.find("article")
# If specific tags found, use their text, otherwise fallback to body
if main_content:
text = main_content.get_text()
logger.debug(f"Extracted text from <{main_content.name}> tag.")
else:
body = soup.find("body")
if body:
text = body.get_text()
logger.debug("Extracted text from <body> tag (fallback).")
else:
text = "" # No body tag found?
logger.warning(f"Could not find <body> tag in {url}")
# Break into lines and remove leading/trailing space on each
lines = (line.strip() for line in text.splitlines())
# Break multi-headlines into a line each
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
# Drop blank lines
text = "\n".join(chunk for chunk in chunks if chunk)
if not text:
logger.warning(f"Could not extract meaningful text from {url}")
raise ValueError("Could not extract text content from the URL.")
logger.info(
f"Successfully extracted text from {url} (Length: {len(text)} chars)"
)
return text
except requests.exceptions.RequestException as e:
logger.error(f"Network error fetching URL {url}: {e}")
raise ConnectionError(f"Could not fetch URL: {e}")
except Exception as e:
logger.error(f"Error processing URL {url}: {e}", exc_info=True)
# Re-raise specific internal errors or a general one
if isinstance(e, (ValueError, ConnectionError)):
raise e
else:
raise RuntimeError(
f"An unexpected error occurred while processing the URL: {e}"
)
def generate_cards_batch(
client, model, topic, num_cards, system_prompt, generate_cloze=False, batch_size=3
):
"""Generate a batch of cards for a topic, potentially including cloze deletions"""
cloze_instruction = ""
if generate_cloze:
cloze_instruction = """
Where appropriate, generate Cloze deletion cards.
- For Cloze cards, set "card_type" to "cloze".
- Format the question field using Anki's cloze syntax (e.g., "The capital of France is {{c1::Paris}}.").
- The "answer" field should contain the full, non-cloze text or specific context for the cloze.
- For standard question/answer cards, set "card_type" to "basic".
"""
cards_prompt = f"""
Generate {num_cards} flashcards for the topic: {topic}
{cloze_instruction}
Return your response as a JSON object with the following structure:
{{
"cards": [
{{
"card_type": "basic or cloze",
"front": {{
"question": "question text (potentially with {{c1::cloze syntax}})"
}},
"back": {{
"answer": "concise answer or full text for cloze",
"explanation": "detailed explanation",
"example": "practical example"
}},
"metadata": {{
"prerequisites": ["list", "of", "prerequisites"],
"learning_outcomes": ["list", "of", "outcomes"],
"misconceptions": ["list", "of", "misconceptions"],
"difficulty": "beginner/intermediate/advanced"
}}
}}
// ... more cards
]
}}
"""
try:
logger.info(
f"Generating card batch for {topic}, Cloze enabled: {generate_cloze}"
)
response = structured_output_completion(
client, model, {"type": "json_object"}, system_prompt, cards_prompt
)
if not response or "cards" not in response:
logger.error("Invalid cards response format")
raise ValueError("Failed to generate cards. Please try again.")
# Convert the JSON response into Card objects
cards = []
for card_data in response["cards"]:
# Ensure required fields are present before creating Card object
if "front" not in card_data or "back" not in card_data:
logger.warning(
f"Skipping card due to missing front/back data: {card_data}"
)
continue
if "question" not in card_data["front"]:
logger.warning(f"Skipping card due to missing question: {card_data}")
continue
if (
"answer" not in card_data["back"]
or "explanation" not in card_data["back"]
or "example" not in card_data["back"]
):
logger.warning(
f"Skipping card due to missing answer/explanation/example: {card_data}"
)
continue
card = Card(
card_type=card_data.get("card_type", "basic"),
front=CardFront(**card_data["front"]),
back=CardBack(**card_data["back"]),
metadata=card_data.get("metadata", {}),
)
cards.append(card)
return cards
except Exception as e:
logger.error(
f"Failed to generate cards batch for {topic}: {str(e)}", exc_info=True
)
raise
# Add near the top with other constants
AVAILABLE_MODELS = [
{
"value": "gpt-4.1", # Corrected model name
"label": "gpt-4.1 (Best Quality)", # Corrected label
"description": "Highest quality, slower generation", # Corrected description
},
{
"value": "gpt-4.1-nano",
"label": "gpt-4.1 Nano (Fast & Efficient)",
"description": "Optimized for speed and lower cost",
},
]
GENERATION_MODES = [
{
"value": "subject",
"label": "Single Subject",
"description": "Generate cards for a specific topic",
},
{
"value": "path",
"label": "Learning Path",
"description": "Break down a job description or learning goal into subjects",
},
]
def generate_cards(
api_key_input,
subject,
generation_mode,
source_text,
url_input,
model_name="gpt-4.1-nano",
topic_number=1,
cards_per_topic=2,
preference_prompt="assume I'm a beginner",
generate_cloze=False,
):
logger.info(f"Starting card generation in {generation_mode} mode")
logger.debug(
f"Parameters: mode={generation_mode}, topics={topic_number}, cards_per_topic={cards_per_topic}, cloze={generate_cloze}"
)
# --- Common Setup ---
if not api_key_input:
logger.warning("No API key provided")
raise gr.Error("OpenAI API key is required")
if not api_key_input.startswith("sk-"):
logger.warning("Invalid API key format")
raise gr.Error("Invalid API key format. OpenAI keys should start with 'sk-'")
# Moved client initialization up
try:
logger.debug("Initializing OpenAI client")
client = OpenAI(api_key=api_key_input)
except Exception as e:
logger.error(f"Failed to initialize OpenAI client: {str(e)}", exc_info=True)
raise gr.Error(f"Failed to initialize OpenAI client: {str(e)}")
model = model_name
flattened_data = []
total = 0
progress_tracker = gr.Progress(track_tqdm=True)
# ---------------------
try:
page_text_for_generation = "" # Initialize variable to hold text for AI
# --- Web Mode --- (Fetch text first)
if generation_mode == "web":
logger.info("Generation mode: Web")
if not url_input or not url_input.strip():
logger.warning("No URL provided for web generation mode.")
raise gr.Error("URL is required for 'From Web' mode.")
gr.Info(f"🕸️ Fetching content from {url_input}...")
try:
page_text_for_generation = fetch_webpage_text(url_input)
gr.Info(
f"✅ Successfully fetched text (approx. {len(page_text_for_generation)} chars). Starting AI generation..."
)
except (ConnectionError, ValueError, RuntimeError) as e:
logger.error(f"Failed to fetch or process URL {url_input}: {e}")
raise gr.Error(
f"Failed to get content from URL: {e}"
) # Display fetch error to user
except Exception as e: # Catch any other unexpected errors during fetch
logger.error(
f"Unexpected error fetching URL {url_input}: {e}", exc_info=True
)
raise gr.Error(f"An unexpected error occurred fetching the URL.")
# --- Text Mode --- (Use provided text)
elif generation_mode == "text":
logger.info("Generation mode: Text Input")
if not source_text or not source_text.strip():
logger.warning("No source text provided for text generation mode.")
raise gr.Error("Source text is required for 'From Text' mode.")
page_text_for_generation = source_text # Use the input text directly
gr.Info("🚀 Starting card generation from text...")
# --- Generation from Text/Web Content ---
if generation_mode == "text" or generation_mode == "web":
# Shared logic for generating cards from fetched/provided text
text_system_prompt = f"""
You are an expert educator specializing in extracting key information and creating flashcards from provided text.
Your goal is to generate clear, concise, and accurate flashcards based *only* on the text given by the user.
Focus on the most important concepts, definitions, facts, or processes mentioned.
Generate {cards_per_topic} cards.
Adhere to the user's learning preferences: {preference_prompt}
Use the specified JSON output format.
For explanations and examples:
- Keep explanations in plain text
- Format code examples with triple backticks (```)
- Separate conceptual examples from code examples
- Use clear, concise language
"""
json_structure_prompt = """
Return your response as a JSON object with the following structure:
{
"cards": [
{
"card_type": "basic or cloze",
"front": {
"question": "question text (potentially with {{c1::cloze syntax}})"
},
"back": {
"answer": "concise answer or full text for cloze",
"explanation": "detailed explanation",
"example": "practical example"
},
"metadata": {
"prerequisites": ["list", "of", "prerequisites"],
"learning_outcomes": ["list", "of", "outcomes"],
"misconceptions": ["list", "of", "misconceptions"],
"difficulty": "beginner/intermediate/advanced"
}
}
// ... more cards
]
}
"""
cloze_instruction = ""
if generate_cloze:
cloze_instruction = """
Where appropriate, generate Cloze deletion cards.
- For Cloze cards, set "card_type" to "cloze".
- Format the question field using Anki's cloze syntax (e.g., "The capital of France is {{{{c1::Paris}}}}.").
- The "answer" field should contain the full, non-cloze text or specific context for the cloze.
- For standard question/answer cards, set "card_type" to "basic".
"""
text_user_prompt = f"""
Generate {cards_per_topic} flashcards based *only* on the following text:
--- TEXT START ---
{page_text_for_generation}
--- TEXT END ---
{cloze_instruction}
{json_structure_prompt}
"""
response = structured_output_completion(
client,
model,
{"type": "json_object"},
text_system_prompt,
text_user_prompt,
)
if not response or "cards" not in response:
logger.error("Invalid cards response format from text generation.")
raise gr.Error("Failed to generate cards from text. Please try again.")
# Process the cards (similar to generate_cards_batch processing)
cards_data = response["cards"]
topic_name = "From Web" if generation_mode == "web" else "From Text"
for card_index, card_data in enumerate(cards_data, start=1):
if "front" not in card_data or "back" not in card_data:
logger.warning(
f"Skipping card due to missing front/back data: {card_data}"
)
continue
if "question" not in card_data["front"]:
logger.warning(
f"Skipping card due to missing question: {card_data}"
)
continue
if (
"answer" not in card_data["back"]
or "explanation" not in card_data["back"]
or "example" not in card_data["back"]
):
logger.warning(
f"Skipping card due to missing answer/explanation/example: {card_data}"
)
continue
card = Card(
card_type=card_data.get("card_type", "basic"),
front=CardFront(**card_data["front"]),
back=CardBack(**card_data["back"]),
metadata=card_data.get("metadata", {}),
)
metadata = card.metadata or {}
row = [
f"1.{card_index}",
topic_name, # Use dynamic topic name
card.card_type,
card.front.question,
card.back.answer,
card.back.explanation,
card.back.example,
metadata.get("prerequisites", []),
metadata.get("learning_outcomes", []),
metadata.get("misconceptions", []),
metadata.get("difficulty", "beginner"),
]
flattened_data.append(row)
total += 1
gr.Info(f"✅ Generated {total} cards from the provided content.")
# --- Subject Mode --- (Existing logic)
elif generation_mode == "subject":
logger.info(f"Generating cards for subject: {subject}")
if not subject or not subject.strip():
logger.warning("No subject provided for subject generation mode.")
raise gr.Error("Subject is required for 'Single Subject' mode.")
gr.Info("🚀 Starting card generation for subject...")
# Note: system_prompt uses subject variable
system_prompt = f"""
You are an expert educator in {subject}, creating an optimized learning sequence.
Your goal is to:
1. Break down the subject into logical concepts
2. Identify prerequisites and learning outcomes
3. Generate cards that build upon each other
4. Address and correct common misconceptions
5. Include verification steps to minimize hallucinations
6. Provide a recommended study order
For explanations and examples:
- Keep explanations in plain text
- Format code examples with triple backticks (```)
- Separate conceptual examples from code examples
- Use clear, concise language
Keep in mind the user's preferences: {preference_prompt}
"""
topic_prompt = f"""
Generate the top {topic_number} important subjects to know about {subject} in
order of ascending difficulty. Return your response as a JSON object with the following structure:
{{
"topics": [
{{
"name": "topic name",
"difficulty": "beginner/intermediate/advanced",
"description": "brief description"
}}
]
}}
"""
logger.info("Generating topics...")
topics_response = structured_output_completion(
client, model, {"type": "json_object"}, system_prompt, topic_prompt
)
if not topics_response or "topics" not in topics_response:
logger.error("Invalid topics response format")
raise gr.Error("Failed to generate topics. Please try again.")
topics = topics_response["topics"]
gr.Info(f"✨ Generated {len(topics)} topics successfully!")
# Generate cards for each topic
for i, topic in enumerate(
progress_tracker.tqdm(topics, desc="Generating cards")
):
try:
# Re-use the system_prompt defined above for topic generation
cards = generate_cards_batch(
client,
model,
topic["name"],
cards_per_topic,
system_prompt, # Use the same system prompt
generate_cloze=generate_cloze,
batch_size=3,
)
if cards:
for card_index, card in enumerate(cards, start=1):
index = f"{i + 1}.{card_index}"
metadata = card.metadata or {}
row = [
index,
topic["name"],
card.card_type,
card.front.question,
card.back.answer,
card.back.explanation,
card.back.example,
metadata.get("prerequisites", []),
metadata.get("learning_outcomes", []),
metadata.get("misconceptions", []),
metadata.get("difficulty", "beginner"),
]
flattened_data.append(row)
total += 1
gr.Info(f"✅ Generated {len(cards)} cards for {topic['name']}")
except Exception as e:
logger.error(
f"Failed to generate cards for topic {topic['name']}: {str(e)}"
)
gr.Warning(f"Failed to generate cards for '{topic['name']}'")
continue
else:
# Handle other modes or invalid mode if necessary
logger.error(f"Invalid generation mode: {generation_mode}")
raise gr.Error(f"Unsupported generation mode: {generation_mode}")
# --- Common Completion Logic ---
final_html = f"""
<div style="text-align: center">
<p>✅ Generation complete!</p>
<p>Total cards generated: {total}</p>
</div>
"""
df = pd.DataFrame(
flattened_data,
columns=[
"Index",
"Topic",
"Card_Type",
"Question",
"Answer",
"Explanation",
"Example",
"Prerequisites",
"Learning_Outcomes",
"Common_Misconceptions",
"Difficulty",
],
)
return df, final_html, total
except Exception as e:
logger.error(f"Card generation failed: {str(e)}", exc_info=True)
# Check if e is already a gr.Error
if isinstance(e, gr.Error):
raise e
else:
raise gr.Error(f"Card generation failed: {str(e)}")
# Update the BASIC_MODEL definition with enhanced CSS/HTML
BASIC_MODEL = genanki.Model(
random.randrange(1 << 30, 1 << 31),
"AnkiGen Enhanced",
fields=[
{"name": "Question"},
{"name": "Answer"},
{"name": "Explanation"},
{"name": "Example"},
{"name": "Prerequisites"},
{"name": "Learning_Outcomes"},
{"name": "Common_Misconceptions"},
{"name": "Difficulty"},
],
templates=[
{
"name": "Card 1",
"qfmt": """
<div class="card question-side">
<div class="difficulty-indicator {{Difficulty}}"></div>
<div class="content">
<div class="question">{{Question}}</div>
<div class="prerequisites" onclick="event.stopPropagation();">
<div class="prerequisites-toggle">Show Prerequisites</div>
<div class="prerequisites-content">{{Prerequisites}}</div>
</div>
</div>
</div>
<script>
document.querySelector('.prerequisites-toggle').addEventListener('click', function(e) {
e.stopPropagation();
this.parentElement.classList.toggle('show');
});
</script>
""",
"afmt": """
<div class="card answer-side">
<div class="content">
<div class="question-section">
<div class="question">{{Question}}</div>
<div class="prerequisites">
<strong>Prerequisites:</strong> {{Prerequisites}}
</div>
</div>
<hr>
<div class="answer-section">
<h3>Answer</h3>
<div class="answer">{{Answer}}</div>
</div>
<div class="explanation-section">
<h3>Explanation</h3>
<div class="explanation-text">{{Explanation}}</div>
</div>
<div class="example-section">
<h3>Example</h3>
<div class="example-text"></div>
<pre><code>{{Example}}</code></pre>
</div>
<div class="metadata-section">
<div class="learning-outcomes">
<h3>Learning Outcomes</h3>
<div>{{Learning_Outcomes}}</div>
</div>
<div class="misconceptions">
<h3>Common Misconceptions - Debunked</h3>
<div>{{Common_Misconceptions}}</div>
</div>
<div class="difficulty">
<h3>Difficulty Level</h3>
<div>{{Difficulty}}</div>
</div>
</div>
</div>
</div>
""",
}
],
css="""
/* Base styles */
.card {
font-family: 'Inter', system-ui, -apple-system, sans-serif;
font-size: 16px;
line-height: 1.6;
color: #1a1a1a;
max-width: 800px;
margin: 0 auto;
padding: 20px;
background: #ffffff;
}
@media (max-width: 768px) {
.card {
font-size: 14px;
padding: 15px;
}
}
/* Question side */
.question-side {
position: relative;
min-height: 200px;
}
.difficulty-indicator {
position: absolute;
top: 10px;
right: 10px;
width: 10px;
height: 10px;
border-radius: 50%;
}
.difficulty-indicator.beginner { background: #4ade80; }
.difficulty-indicator.intermediate { background: #fbbf24; }
.difficulty-indicator.advanced { background: #ef4444; }
.question {
font-size: 1.3em;
font-weight: 600;
color: #2563eb;
margin-bottom: 1.5em;
}
.prerequisites {
margin-top: 1em;
font-size: 0.9em;
color: #666;
}
.prerequisites-toggle {
color: #2563eb;
cursor: pointer;
text-decoration: underline;
}
.prerequisites-content {
display: none;
margin-top: 0.5em;
padding: 0.5em;
background: #f8fafc;
border-radius: 4px;
}
.prerequisites.show .prerequisites-content {
display: block;
}
/* Answer side */
.answer-section,
.explanation-section,
.example-section {
margin: 1.5em 0;
padding: 1.2em;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
.answer-section {
background: #f0f9ff;
border-left: 4px solid #2563eb;
}
.explanation-section {
background: #f0fdf4;
border-left: 4px solid #4ade80;
}
.example-section {
background: #fff7ed;
border-left: 4px solid #f97316;
}
/* Code blocks */
pre code {
display: block;
padding: 1em;
background: #1e293b;
color: #e2e8f0;
border-radius: 6px;
overflow-x: auto;
font-family: 'Fira Code', 'Consolas', monospace;
font-size: 0.9em;
}
/* Metadata tabs */
.metadata-tabs {
margin-top: 2em;
border: 1px solid #e5e7eb;
border-radius: 8px;
overflow: hidden;
}
.tab-buttons {
display: flex;
background: #f8fafc;
border-bottom: 1px solid #e5e7eb;
}
.tab-btn {
flex: 1;
padding: 0.8em;
border: none;
background: none;
cursor: pointer;
font-weight: 500;
color: #64748b;
transition: all 0.2s;
}
.tab-btn:hover {
background: #f1f5f9;
}
.tab-btn.active {
color: #2563eb;
background: #fff;
border-bottom: 2px solid #2563eb;
}
.tab-content {
display: none;
padding: 1.2em;
}
.tab-content.active {
display: block;
}
/* Responsive design */
@media (max-width: 640px) {
.tab-buttons {
flex-direction: column;
}
.tab-btn {
width: 100%;
text-align: left;
padding: 0.6em;
}
.answer-section,
.explanation-section,
.example-section {
padding: 1em;
margin: 1em 0;
}
}
/* Animations */
@keyframes fadeIn {
from { opacity: 0; }
to { opacity: 1; }
}
.card {
animation: fadeIn 0.3s ease-in-out;
}
.tab-content.active {
animation: fadeIn 0.2s ease-in-out;
}
""",
)
# Define the Cloze Model (based on Anki's default Cloze type)
CLOZE_MODEL = genanki.Model(
random.randrange(1 << 30, 1 << 31), # Needs a unique ID
"AnkiGen Cloze Enhanced",
model_type=genanki.Model.CLOZE, # Specify model type as CLOZE
fields=[
{"name": "Text"}, # Field for the text containing the cloze deletion
{"name": "Extra"}, # Field for additional info shown on the back
{"name": "Difficulty"}, # Keep metadata
{"name": "SourceTopic"}, # Add topic info
],
templates=[
{
"name": "Cloze Card",
"qfmt": "{{cloze:Text}}",
"afmt": """
{{cloze:Text}}
<hr>
<div class="extra-info">{{Extra}}</div>
<div class="metadata-footer">Difficulty: {{Difficulty}} | Topic: {{SourceTopic}}</div>
""",
}
],
css="""
.card {
font-family: 'Inter', system-ui, -apple-system, sans-serif;
font-size: 16px; line-height: 1.6; color: #1a1a1a;
max-width: 800px; margin: 0 auto; padding: 20px;
background: #ffffff;
}
.cloze {
font-weight: bold; color: #2563eb;
}
.extra-info {
margin-top: 1em; padding-top: 1em;
border-top: 1px solid #e5e7eb;
font-size: 0.95em; color: #333;
background: #f8fafc; padding: 1em; border-radius: 6px;
}
.extra-info h3 { margin-top: 0.5em; font-size: 1.1em; color: #1e293b; }
.extra-info pre code {
display: block; padding: 1em; background: #1e293b;
color: #e2e8f0; border-radius: 6px; overflow-x: auto;
font-family: 'Fira Code', 'Consolas', monospace; font-size: 0.9em;
margin-top: 0.5em;
}
.metadata-footer {
margin-top: 1.5em; font-size: 0.85em; color: #64748b; text-align: right;
}
""",
)
# Split the export functions
def export_csv(data):
"""Export the generated cards as a CSV file"""
if data is None:
raise gr.Error("No data to export. Please generate cards first.")
if len(data) < 2: # Minimum 2 cards
raise gr.Error("Need at least 2 cards to export.")
try:
gr.Info("💾 Exporting to CSV...")
csv_path = "anki_cards.csv"
data.to_csv(csv_path, index=False)
gr.Info("✅ CSV export complete!")
return gr.File(value=csv_path, visible=True)
except Exception as e:
logger.error(f"Failed to export CSV: {str(e)}", exc_info=True)
raise gr.Error(f"Failed to export CSV: {str(e)}")
def export_deck(data, subject):
"""Export the generated cards as an Anki deck with pedagogical metadata"""
if data is None:
raise gr.Error("No data to export. Please generate cards first.")
if len(data) < 2: # Minimum 2 cards
raise gr.Error("Need at least 2 cards to export.")
try:
gr.Info("💾 Creating Anki deck...")
deck_id = random.randrange(1 << 30, 1 << 31)
deck = genanki.Deck(deck_id, f"AnkiGen - {subject}")
records = data.to_dict("records")
# Ensure both models are added to the deck package
deck.add_model(BASIC_MODEL)
deck.add_model(CLOZE_MODEL)
# Add notes to the deck
for record in records:
card_type = record.get("Card_Type", "basic").lower()
if card_type == "cloze":
# Create Cloze note
extra_content = f"""
<h3>Explanation:</h3>
<div>{record["Explanation"]}</div>
<h3>Example:</h3>
<pre><code>{record["Example"]}</code></pre>
<h3>Prerequisites:</h3>
<div>{record["Prerequisites"]}</div>
<h3>Learning Outcomes:</h3>
<div>{record["Learning_Outcomes"]}</div>
<h3>Watch out for:</h3>
<div>{record["Common_Misconceptions"]}</div>
"""
note = genanki.Note(
model=CLOZE_MODEL,
fields=[
str(record["Question"]), # Contains {{c1::...}}
extra_content, # All other info goes here
str(record["Difficulty"]),
str(record["Topic"]),
],
)
else: # Default to basic card
# Create Basic note (existing logic)
note = genanki.Note(
model=BASIC_MODEL,
fields=[
str(record["Question"]),
str(record["Answer"]),
str(record["Explanation"]),
str(record["Example"]),
str(record["Prerequisites"]),
str(record["Learning_Outcomes"]),
str(record["Common_Misconceptions"]),
str(record["Difficulty"]),
],
)
deck.add_note(note)
# Create a temporary directory for the package
with tempfile.TemporaryDirectory() as temp_dir:
output_path = Path(temp_dir) / "anki_deck.apkg"
package = genanki.Package(deck)
package.write_to_file(output_path)
# Copy to a more permanent location
final_path = "anki_deck.apkg"
with open(output_path, "rb") as src, open(final_path, "wb") as dst:
dst.write(src.read())
gr.Info("✅ Anki deck export complete!")
return gr.File(value=final_path, visible=True)
except Exception as e:
logger.error(f"Failed to export Anki deck: {str(e)}", exc_info=True)
raise gr.Error(f"Failed to export Anki deck: {str(e)}")
# Add this near the top where we define our CSS
js_storage = """
async () => {
// Load decks from localStorage
const loadDecks = () => {
const decks = localStorage.getItem('ankigen_decks');
return decks ? JSON.parse(decks) : [];
};
// Save decks to localStorage
const saveDecks = (decks) => {
localStorage.setItem('ankigen_decks', JSON.stringify(decks));
};
// Add methods to window for Gradio to access
window.loadStoredDecks = loadDecks;
window.saveStoredDecks = saveDecks;
// Initial load
return loadDecks();
}
"""
# Create a custom theme
custom_theme = gr.themes.Soft().set(
body_background_fill="*background_fill_secondary",
block_background_fill="*background_fill_primary",
block_border_width="0",
button_primary_background_fill="*primary_500",
button_primary_text_color="white",
)
def analyze_learning_path(api_key, description, model):
"""Analyze a job description or learning goal to create a structured learning path"""
try:
client = OpenAI(api_key=api_key)
except Exception as e:
logger.error(f"Failed to initialize OpenAI client: {str(e)}")
raise gr.Error(f"Failed to initialize OpenAI client: {str(e)}")
system_prompt = """You are an expert curriculum designer and educational consultant.
Your task is to analyze learning goals and create structured, achievable learning paths.
Break down complex topics into manageable subjects, identify prerequisites,
and suggest practical projects that reinforce learning.
Focus on creating a logical progression that builds upon previous knowledge."""
path_prompt = f"""
Analyze this description and create a structured learning path.
Return your analysis as a JSON object with the following structure:
{{
"subjects": [
{{
"Subject": "name of the subject",
"Prerequisites": "required prior knowledge",
"Time Estimate": "estimated time to learn"
}}
],
"learning_order": "recommended sequence of study",
"projects": "suggested practical projects"
}}
Description to analyze:
{description}
"""
try:
response = structured_output_completion(
client, model, {"type": "json_object"}, system_prompt, path_prompt
)
if (
not response
or "subjects" not in response
or "learning_order" not in response
or "projects" not in response
):
logger.error("Invalid response format from API")
raise gr.Error("Failed to analyze learning path. Please try again.")
subjects_df = pd.DataFrame(response["subjects"])
learning_order_text = (
f"### Recommended Learning Order\n{response['learning_order']}"
)
projects_text = f"### Suggested Projects\n{response['projects']}"
return subjects_df, learning_order_text, projects_text
except Exception as e:
logger.error(f"Failed to analyze learning path: {str(e)}")
raise gr.Error(f"Failed to analyze learning path: {str(e)}")
# --- Example Data for Initialization ---
example_data = pd.DataFrame(
[
[
"1.1",
"SQL Basics",
"basic",
"What is a SELECT statement used for?",
"Retrieving data from one or more database tables.",
"The SELECT statement is the most common command in SQL. It allows you to specify which columns and rows you want to retrieve from a table based on certain conditions.",
"```sql\\nSELECT column1, column2 FROM my_table WHERE condition;\\n```",
["Understanding of database tables"],
["Retrieve specific data", "Filter results"],
["❌ SELECT * is always efficient (Reality: Can be slow for large tables)"],
"beginner",
],
[
"2.1",
"Python Fundamentals",
"cloze",
"The primary keyword to define a function in Python is {{c1::def}}.",
"def",
"Functions are defined using the `def` keyword, followed by the function name, parentheses for arguments, and a colon. The indented block below defines the function body.",
# Use a raw triple-quoted string for the code block to avoid escaping issues
r"""```python
def greet(name):
print(f"Hello, {name}!")
```""",
["Basic programming concepts"],
["Define reusable blocks of code"],
["❌ Forgetting the colon (:) after the definition"],
"beginner",
],
],
columns=[
"Index",
"Topic",
"Card_Type",
"Question",
"Answer",
"Explanation",
"Example",
"Prerequisites",
"Learning_Outcomes",
"Common_Misconceptions",
"Difficulty",
],
)
# -------------------------------------
with gr.Blocks(
theme=custom_theme,
title="AnkiGen",
css="""
#footer {display:none !important}
.tall-dataframe {min-height: 500px !important}
.contain {max-width: 100% !important; margin: auto;}
.output-cards {border-radius: 8px; box-shadow: 0 4px 6px -1px rgba(0,0,0,0.1);}
.hint-text {font-size: 0.9em; color: #666; margin-top: 4px;}
.export-group > .gradio-group { margin-bottom: 0 !important; padding-bottom: 5px !important; }
""",
js=js_storage,
) as ankigen:
with gr.Column(elem_classes="contain"):
gr.Markdown("# 📚 AnkiGen - Advanced Anki Card Generator")
gr.Markdown("""
#### Generate comprehensive Anki flashcards using AI.
""")
# Configuration Section in an Accordion
with gr.Accordion("Configuration Settings", open=True):
# Create a row to hold two columns for settings
with gr.Row():
# Column 1: Basic settings
with gr.Column(scale=1):
# Add mode selection
generation_mode = gr.Radio(
choices=[
("Single Subject", "subject"),
("Learning Path", "path"),
("From Text", "text"),
("From Web", "web"),
],
value="subject",
label="Generation Mode",
info="Choose how you want to generate content",
)
# Create containers for different modes
with gr.Group() as subject_mode:
subject = gr.Textbox(
label="Subject",
placeholder="Enter the subject, e.g., 'Basic SQL Concepts'",
info="The topic you want to generate flashcards for",
)
with gr.Group(visible=False) as path_mode:
description = gr.Textbox(
label="Learning Goal",
placeholder="Paste a job description or describe what you want to learn...",
info="We'll break this down into learnable subjects",
lines=5,
)
analyze_button = gr.Button(
"Analyze & Break Down", variant="secondary"
)
# Add group for text input mode
with gr.Group(visible=False) as text_mode:
source_text = gr.Textbox(
label="Source Text",
placeholder="Paste the text you want to generate cards from here...",
info="The AI will extract key information from this text to create cards.",
lines=15,
)
# Add group for web input mode
with gr.Group(visible=False) as web_mode:
url_input = gr.Textbox(
label="Web Page URL",
placeholder="Paste the URL of the page you want to generate cards from...",
info="The AI will attempt to extract content from this URL.",
)
# Common settings moved inside the accordion, in column 1
api_key_input = gr.Textbox(
label="OpenAI API Key",
type="password",
placeholder="Enter your OpenAI API key",
value=os.getenv("OPENAI_API_KEY", ""),
info="Your OpenAI API key starting with 'sk-'",
)
# Column 2: Advanced settings accordion
with gr.Column(scale=1):
# Advanced Settings Accordion moved inside the main accordion, in column 2
with gr.Accordion("Advanced Settings", open=False):
model_choice = gr.Dropdown(
choices=["gpt-4.1", "gpt-4.1-nano"], # Corrected choices
value="gpt-4.1-nano", # Changed default to nano as it's faster/cheaper
label="Model Selection",
info="Select the AI model to use for generation",
)
# Add tooltip/description for models
model_info = gr.Markdown(
"""
**Model Information:**
- **gpt-4.1**: Highest quality, slower generation
- **gpt-4.1-nano**: Optimized for speed and lower cost
""" # Corrected descriptions
)
topic_number = gr.Slider(
label="Number of Topics",
minimum=2,
maximum=20,
step=1,
value=2,
info="How many distinct topics to cover within the subject",
)
cards_per_topic = gr.Slider(
label="Cards per Topic",
minimum=2,
maximum=30,
step=1,
value=3,
info="How many flashcards to generate for each topic",
)
preference_prompt = gr.Textbox(
label="Learning Preferences",
placeholder="e.g., 'Assume I'm a beginner' or 'Focus on practical examples'",
info="Customize how the content is presented",
lines=3,
)
generate_cloze_checkbox = gr.Checkbox(
label="Generate Cloze Cards (Experimental)",
value=False,
info="Allow the AI to generate fill-in-the-blank style cards where appropriate.",
)
# End of Advanced Settings Accordion
# End of Row containing settings columns
# End of Configuration Settings Accordion
# Generation Button moved outside the Accordion
generate_button = gr.Button("Generate Cards", variant="primary")
# Output Area remains below the button
with gr.Group(
visible=False
) as path_results: # Initial visibility controlled by mode
gr.Markdown("### Learning Path Analysis")
subjects_list = gr.Dataframe(
headers=["Subject", "Prerequisites", "Time Estimate"],
label="Recommended Subjects",
interactive=False,
)
learning_order = gr.Markdown("### Recommended Learning Order")
projects = gr.Markdown("### Suggested Projects")
use_subjects = gr.Button(
"Use These Subjects ℹ️",
variant="primary",
)
gr.Markdown(
"*Click to copy subjects to main input for card generation*",
elem_classes="hint-text",
)
with gr.Group() as cards_output: # Initial visibility controlled by mode
gr.Markdown("### Generated Cards")
# Output Format Documentation (can stay here)
with gr.Accordion("Output Format", open=False):
gr.Markdown("""
The generated cards include:
* **Index**: Unique identifier for each card
* **Topic**: The specific subtopic within your subject
* **Card_Type**: Type of card (basic or cloze)
* **Question**: Clear, focused question for the flashcard front
* **Answer**: Concise core answer
* **Explanation**: Detailed conceptual explanation
* **Example**: Practical implementation or code example
* **Prerequisites**: Required knowledge for this concept
* **Learning Outcomes**: What you should understand after mastering this card
* **Common Misconceptions**: Incorrect assumptions debunked with explanations
* **Difficulty**: Concept complexity level for optimal study sequencing
Export options:
- **CSV**: Raw data for custom processing
- **Anki Deck**: Ready-to-use deck with formatted cards and metadata
""")
with gr.Accordion("Example Card Format", open=False):
gr.Code(
label="Example Card",
value="""
{
"front": {
"question": "What is a PRIMARY KEY constraint in SQL?"
},
"back": {
"answer": "A PRIMARY KEY constraint uniquely identifies each record in a table",
"explanation": "A primary key serves as a unique identifier for each row in a database table. It enforces data integrity by ensuring that:\n1. Each value is unique\n2. No null values are allowed\n3. The value remains stable over time\n\nThis is fundamental for:\n- Establishing relationships between tables\n- Maintaining data consistency\n- Efficient data retrieval",
"example": "-- Creating a table with a primary key\nCREATE TABLE Users (\n user_id INT PRIMARY KEY,\n username VARCHAR(50) NOT NULL,\n email VARCHAR(100) UNIQUE\n);"
},
"metadata": {
"prerequisites": ["Basic SQL table concepts", "Understanding of data types"],
"learning_outcomes": ["Understand the purpose and importance of primary keys", "Know how to create and use primary keys"],
"common_misconceptions": [
"❌ Misconception: Primary keys must always be single columns\n✓ Reality: Primary keys can be composite (multiple columns)",
"❌ Misconception: Primary keys must be integers\n✓ Reality: Any data type that ensures uniqueness can be used"
],
"difficulty": "beginner"
}
}
""",
language="json",
)
output = gr.Dataframe(
value=example_data,
headers=[
"Index",
"Topic",
"Card_Type",
"Question",
"Answer",
"Explanation",
"Example",
"Prerequisites",
"Learning_Outcomes",
"Common_Misconceptions",
"Difficulty",
],
interactive=True,
elem_classes="tall-dataframe",
wrap=True,
column_widths=[
50,
100,
80,
200,
200,
250,
200,
150,
150,
150,
100,
],
)
with gr.Group(elem_classes="export-group"):
gr.Markdown("#### Export Generated Cards")
with gr.Row():
export_csv_button = gr.Button("Export to CSV", variant="secondary")
export_anki_button = gr.Button(
"Export to Anki Deck (.apkg)", variant="secondary"
)
with gr.Row(): # Row containing File components is now visible
download_csv = gr.File(label="Download CSV", interactive=False)
download_anki = gr.File(
label="Download Anki Deck",
interactive=False,
)
# Add near the top of the Blocks
with gr.Row():
progress = gr.HTML(visible=False)
total_cards = gr.Number(
label="Total Cards Generated", value=0, visible=False
)
# Adjust JavaScript handler for mode switching
def update_mode_visibility(mode):
is_subject = mode == "subject"
is_path = mode == "path"
is_text = mode == "text"
is_web = mode == "web"
subject_val = subject.value if is_subject else ""
description_val = description.value if is_path else ""
text_val = source_text.value if is_text else ""
url_val = url_input.value if is_web else ""
return {
subject_mode: gr.update(visible=is_subject),
path_mode: gr.update(visible=is_path),
text_mode: gr.update(visible=is_text),
web_mode: gr.update(visible=is_web),
path_results: gr.update(visible=is_path),
cards_output: gr.update(visible=is_subject or is_text or is_web),
subject: gr.update(value=subject_val),
description: gr.update(value=description_val),
source_text: gr.update(value=text_val),
url_input: gr.update(value=url_val),
output: gr.update(value=None),
subjects_list: gr.update(value=None),
learning_order: gr.update(value=""),
projects: gr.update(value=""),
progress: gr.update(value="", visible=False),
total_cards: gr.update(value=0, visible=False),
}
generation_mode.change(
fn=update_mode_visibility,
inputs=[generation_mode],
outputs=[
subject_mode,
path_mode,
text_mode,
web_mode,
path_results,
cards_output,
subject,
description,
source_text,
url_input,
output,
subjects_list,
learning_order,
projects,
progress,
total_cards,
],
)
analyze_button.click(
fn=analyze_learning_path,
inputs=[api_key_input, description, model_choice],
outputs=[subjects_list, learning_order, projects],
)
def use_selected_subjects(subjects_df):
if subjects_df is None or subjects_df.empty:
gr.Warning("No subjects available to copy from Learning Path analysis.")
return (
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
)
subjects = subjects_df["Subject"].tolist()
combined_subject = ", ".join(subjects)
suggested_topics = min(len(subjects) + 1, 20)
return {
generation_mode: "subject",
subject_mode: gr.update(visible=True),
path_mode: gr.update(visible=False),
text_mode: gr.update(visible=False),
web_mode: gr.update(visible=False),
path_results: gr.update(visible=False),
cards_output: gr.update(visible=True),
subject: combined_subject,
description: "",
source_text: "",
url_input: "",
topic_number: suggested_topics,
preference_prompt: "Focus on connections between these subjects and their practical applications.",
output: example_data,
subjects_list: subjects_df,
learning_order: gr.update(),
projects: gr.update(),
progress: gr.update(visible=False),
total_cards: gr.update(visible=False),
}
use_subjects.click(
fn=use_selected_subjects,
inputs=[subjects_list],
outputs=[
generation_mode,
subject_mode,
path_mode,
text_mode,
web_mode,
path_results,
cards_output,
subject,
description,
source_text,
url_input,
topic_number,
preference_prompt,
output,
subjects_list,
learning_order,
projects,
progress,
total_cards,
],
)
generate_button.click(
fn=generate_cards,
inputs=[
api_key_input,
subject,
generation_mode,
source_text,
url_input,
model_choice,
topic_number,
cards_per_topic,
preference_prompt,
generate_cloze_checkbox,
],
outputs=[output, progress, total_cards],
show_progress="full",
)
export_csv_button.click(
fn=export_csv,
inputs=[output],
outputs=download_csv,
show_progress="full",
)
export_anki_button.click(
fn=export_deck,
inputs=[output, subject],
outputs=download_anki,
show_progress="full",
)
if __name__ == "__main__":
logger.info("Starting AnkiGen application")
ankigen.launch(share=False, favicon_path="./favicon.ico")