File size: 11,538 Bytes
2224132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import streamlit as st
import os
import importlib
import sys
from langchain_openai import OpenAI
import re
import json

from algos.PWS import *
from utils.util import *
from nodes.Worker import *
from prompts import fewshots

# Load API keys
# with open(os.path.join('./keys/', 'openai.key'), 'r') as f:
#     os.environ["OPENAI_API_KEY"] = f.read().strip()
# with open(os.path.join('./keys/', 'serpapi.key'), 'r') as f:
#     os.environ["SERPAPI_API_KEY"] = f.read().strip()


def reload_modules():
    """Reload all relevant modules"""
    importlib.reload(sys.modules['nodes.Worker'])
    importlib.reload(sys.modules['algos.PWS'])
    importlib.reload(sys.modules['utils.util'])
    importlib.reload(sys.modules['prompts.fewshots'])
    importlib.reload(sys.modules['prompts.solver'])
    return "✅ Modules reloaded successfully!"


def process(tools, model, input_text):
    # Use study abroad fewshot for study-related questions
    if any(word in input_text.lower() for word in
           ["study", "student", "university", "college", "school", "abroad", "học", "trường", "du học", "học bổng",
            "gpa", "ielts", "tcf", "delf", "scholarship"]):
        # Ensure both Google and LLM are included for study abroad queries
        print(tools)
        assert ("LLM" in tools) and ("Google" or "Duckduckgo" in tools)
        method = PWS_Base(planner_model=model, solver_model=model,
                          fewshot=fewshots.STUDY_ABROAD_PWS, available_tools=tools)
    else:
        method = PWS_Base(planner_model=model, solver_model=model,
                          fewshot=fewshots.TRIVIAQA_PWS, available_tools=tools)
    response = method.run(input_text)

    # Extract planner log
    plan = response["planner_log"].split(input_text)[1].strip('\n')

    # Extract full solver log without truncating at "Now begin to solve the task"
    solve = response["solver_log"].split(input_text)[1].strip('\n')

    # Get the complete output
    output = response["output"]

    return plan, solve, output


def evaluate(response, plan, solve):
    """
    Evaluate whether the response is based on evidence or contains hallucinations.

    Args:
        response: The assistant's full response
        plan: The planning process
        solve: The solving process with evidence

    Returns:
        Dictionary with reasoning, summary and evaluation status
    """
    # Initialize OpenAI client
    llm = OpenAI(temperature=0)

    # Extract only evidence paragraphs from solve
    evidence_blocks = []
    for block in solve.split("\n\n"):
        if "Evidence:" in block:
            evidence_part = block.split("Evidence:", 1)[1].strip()
            if evidence_part:
                evidence_blocks.append(evidence_part)

    # Combine evidence sources
    evidence = "\n\n".join(evidence_blocks)
    if not evidence:
        evidence = solve  # Fallback to using entire solve text if no evidence found

    # Create prompt for evaluation
    prompt = f"""
    Evaluate whether the following response is factually supported by the provided evidence.

    Response to evaluate:
    {response}

    Evidence:
    {evidence}

    Provide your evaluation in this format:
    REASONING: Detailed analysis comparing the response against the evidence
    SUMMARY: Brief summary of the evaluation
    VERDICT: [SUPPORTED/PARTIALLY SUPPORTED/UNSUPPORTED] - Choose one verdict
    """

    try:
        result_text = llm.invoke(prompt).strip()

        # Parse the structured output
        reasoning = ""
        summary = ""
        verdict = "UNSUPPORTED"

        if "REASONING:" in result_text:
            parts = result_text.split("REASONING:", 1)
            remainder = parts[1]
            if "SUMMARY:" in remainder:
                reasoning, remainder = remainder.split("SUMMARY:", 1)
                if "VERDICT:" in remainder:
                    summary, verdict = remainder.split("VERDICT:", 1)

        reasoning = reasoning.strip()
        summary = summary.strip()
        verdict = verdict.strip()

        # Determine verdict category
        verdict_category = "unsupported"
        if "SUPPORTED" in verdict and not "PARTIALLY" in verdict and not "UNSUPPORTED" in verdict:
            verdict_category = "supported"
        elif "PARTIALLY" in verdict:
            verdict_category = "partially_supported"

        return {
            "reasoning": reasoning,
            "summary": summary,
            "verdict": verdict,
            "verdict_category": verdict_category
        }

    except Exception as e:
        return {
            "reasoning": f"Error during evaluation: {str(e)}",
            "summary": "Could not complete evaluation",
            "verdict": "EVALUATION FAILED",
            "verdict_category": "error"
        }


# Main app
st.set_page_config(page_title="ReWOO Demo", layout="wide")
st.title("ReWOO Demo 🤗")
st.markdown("""
Demonstrating our recent work -- ReWOO: Decoupling Reasoning from Observations for Efficient Augmented Language Models.
Note that this demo is only a conceptual impression of our work, we use a zero-shot set up and not optimizing the run time.
""")

# Initialize session state
if 'messages' not in st.session_state:
    st.session_state.messages = []

# Sidebar
with st.sidebar:
    st.header("Configuration")

    # Tools selection
    tools = st.multiselect(
        "Select Tools",
        options=['Wikipedia', 'Google', 'LLM', 'WolframAlpha', 'Calculator', 'Duckduckgo'],
        default=['Duckduckgo', 'LLM']
    )

    # Model selection
    model = st.selectbox(
        "Select Model",
        options=["text-davinci-003", "gpt-3.5-turbo"],
        index=1
    )

    # Refresh modules button
    if st.button("🔄 Refresh Modules"):
        status = reload_modules()
        st.success(status)

    # Examples section
    st.header("Examples")

    if st.button("Example 1: American Callan Pinckney's system"):
        example_text = "American Callan Pinckney's eponymously named system became a best-selling (1980s-2000s) book/video franchise in what genre?"
        st.session_state.messages.append({"role": "user", "content": example_text})
        with st.spinner('Processing...'):
            plan, solve, output = process(["Wikipedia", "LLM"], "gpt-3.5-turbo", example_text)
            st.session_state.messages.append({"role": "assistant", "content": output, "plan": plan, "solve": solve})

    if st.button("Example 2: ReWOO paper"):
        example_text = "What is the recent paper ReWOO: Decoupling Reasoning from Observations for Efficient Augmented Language Models about?"
        st.session_state.messages.append({"role": "user", "content": example_text})
        with st.spinner('Processing...'):
            plan, solve, output = process(["Google", "LLM"], "gpt-3.5-turbo", example_text)
            st.session_state.messages.append({"role": "assistant", "content": output, "plan": plan, "solve": solve})

    if st.button("Example 3: Car acceleration"):
        example_text = "the car can accelerate from 0 to 27.8 m/s in a time of 3.85 seconds. Determine the acceleration of this car in m/s/s."
        st.session_state.messages.append({"role": "user", "content": example_text})
        with st.spinner('Processing...'):
            plan, solve, output = process(["Calculator", "WolframAlpha"], "gpt-3.5-turbo", example_text)
            st.session_state.messages.append({"role": "assistant", "content": output, "plan": plan, "solve": solve})

# Display chat history
for i, message in enumerate(st.session_state.messages):
    if message["role"] == "user":
        st.chat_message("user").write(message["content"])
    else:
        with st.chat_message("assistant"):
            st.write(message["content"])

            with st.expander("Show reasoning process"):
                st.subheader("Planner")
                st.text(message["plan"])
                st.subheader("Solver")
                st.text(message["solve"])

            # Add evaluate button in the expander
            if "evaluation_results" not in message:
                if st.button("🔍 Evaluate", key=f"eval_btn_{i}", type="secondary"):
                    with st.spinner("Evaluating response..."):
                        results = evaluate(message["content"], message["plan"], message["solve"])
                        st.session_state.messages[i]["evaluation_results"] = results
                        st.rerun()
            else:
                # Show evaluation in an expander
                with st.expander("Evaluation Results"):
                    results = message["evaluation_results"]

                    # Display verdict with color
                    verdict_color = "red"
                    if results["verdict_category"] == "supported":
                        verdict_color = "green"
                    elif results["verdict_category"] == "partially_supported":
                        verdict_color = "orange"

                    st.markdown(f"<h4 style='color: {verdict_color};'>{results['verdict']}</h4>",
                                unsafe_allow_html=True)
                    st.subheader("Summary")
                    st.write(results["summary"])
                    st.subheader("Detailed Analysis")
                    st.write(results["reasoning"])

# User input
if prompt := st.chat_input("Ask something..."):
    st.session_state.messages.append({"role": "user", "content": prompt})
    st.chat_message("user").write(prompt)

    with st.chat_message("assistant"):
        with st.spinner('Researching...'):
            plan, solve, output = process(tools, model, prompt)

        st.write(output)

        with st.expander("Show research process"):
            st.subheader("Planner")
            st.text(plan)
            st.subheader("Solver")
            st.text(solve)

        # Add evaluate button in expander for current response
        if st.button("🔍 Evaluate", key="eval_current", type="secondary"):
            with st.spinner("Evaluating response..."):
                results = evaluate(output, plan, solve)

                # Show evaluation in an expander
                with st.expander("Evaluation Results"):
                    # Display verdict with color
                    verdict_color = "red"
                    if results["verdict_category"] == "supported":
                        verdict_color = "green"
                    elif results["verdict_category"] == "partially_supported":
                        verdict_color = "orange"

                    st.markdown(f"<h4 style='color: {verdict_color};'>{results['verdict']}</h4>",
                                unsafe_allow_html=True)
                    st.subheader("Summary")
                    st.write(results["summary"])
                    st.subheader("Detailed Analysis")
                    st.write(results["reasoning"])

                    # Store evaluation results
                    for i in range(len(st.session_state.messages)):
                        if st.session_state.messages[i]["role"] == "assistant" and \
                                st.session_state.messages[i]["content"] == output:
                            st.session_state.messages[i]["evaluation_results"] = results
                            break

    # Add assistant response to chat history
    st.session_state.messages.append({"role": "assistant", "content": output, "plan": plan, "solve": solve})

# Clear chat button
if st.sidebar.button("Clear Chat"):
    st.session_state.messages = []
    st.rerun()