Spaces:
Running
Running
File size: 10,656 Bytes
86e21aa 272a563 86e21aa 272a563 86e21aa 272a563 86e21aa 272a563 86e21aa 272a563 86e21aa 272a563 86e21aa 272a563 86e21aa 272a563 86e21aa 272a563 86e21aa 272a563 86e21aa 272a563 86e21aa 272a563 86e21aa 272a563 86e21aa 272a563 86e21aa 272a563 86e21aa 272a563 86e21aa 272a563 86e21aa 272a563 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import streamlit as st
from transformers import VisionEncoderDecoderModel, AutoTokenizer
from datasets import load_dataset, concatenate_datasets
from texteller.api.load import load_model, load_tokenizer
from texteller.api.inference import img2latex
from skimage.metrics import structural_similarity as ssim
from modules.cdm.evaluation import compute_cdm_score
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import io
from io import BytesIO
import base64
import pandas as pd
import re
import os
import evaluate
import time
from collections import defaultdict
import shutil
# Configure Streamlit layout
st.set_page_config(layout="wide")
st.title("TeXTeller Demo: LaTeX Code Prediction from Math Images")
# Load model and tokenizer
@st.cache_resource
def load_model_and_tokenizer():
checkpoint = "OleehyO/TexTeller"
model = load_model(checkpoint)
tokenizer = load_tokenizer(checkpoint)
return model, tokenizer
@st.cache_data
def load_data():
dataset = load_dataset("linxy/LaTeX_OCR", "small")
dataset = concatenate_datasets([split for split in dataset.values()])
dataset = dataset.map(lambda sample: {
"complexity": estimate_complexity(sample["text"]),
"latex_length": len(sample["text"]),
"latex_depth": max_brace_depth(sample["text"]),
"text": normalize_latex(sample["text"])
})
return dataset
@st.cache_resource
def load_metrics():
return evaluate.load("bleu")
# Utilities to evaluate LaTeX complexity
def count_occurrences(pattern, text):
return len(re.findall(pattern, text))
def max_brace_depth(latex):
depth = max_depth = 0
for char in latex:
if char == '{':
depth += 1
max_depth = max(max_depth, depth)
elif char == '}':
depth -= 1
return max_depth
def estimate_complexity(latex):
length = len(latex)
depth = max_brace_depth(latex)
score = 0
score += count_occurrences(r'\\(frac|sqrt)', latex)
score += count_occurrences(r'\\(sum|prod|int)', latex) * 2
score += count_occurrences(r'\\(left|right|begin|end)', latex) * 2
score += count_occurrences(r'\\begin\{(bmatrix|matrix|pmatrix)\}', latex) * 3
greek_letters = r'\\(alpha|beta|gamma|delta|epsilon|zeta|eta|theta|iota|kappa|lambda|mu|nu|xi|pi|rho|sigma|tau|upsilon|phi|chi|psi|omega|' \
r'Gamma|Delta|Theta|Lambda|Xi|Pi|Sigma|Upsilon|Phi|Psi|Omega)'
score += count_occurrences(greek_letters, latex) * 0.5
score += depth
score += length / 20
if score < 4:
return "very simple"
elif score < 8:
return "simple"
elif score < 12:
return "medium"
elif score < 20:
return "complex"
return "very complex"
def normalize_latex(latex_code):
latex_code = latex_code.replace(" ", "").replace("\\displaystyle", "")
latex_code = re.sub(r"\\begin\{align\**\}", "", latex_code)
latex_code = re.sub(r"\\end\{align\**\}", "", latex_code)
return latex_code
def compute_ssim(image1, image2):
"""Calcule le SSIM entre deux images PIL"""
img1 = np.array(image1.convert("L")) # Convertir en niveaux de gris
img2 = np.array(image2.convert("L"))
return ssim(img1, img2)
# Convert LaTeX to image
def latex2image(latex_expression, image_size_in=(3, 0.5), fontsize=16, dpi=200):
fig = plt.figure(figsize=image_size_in, dpi=dpi)
fig.text(
x=0.5,
y=0.5,
s=f"${latex_expression}$",
horizontalalignment="center",
verticalalignment="center",
fontsize=fontsize
)
buf = io.BytesIO()
plt.savefig(buf, format="PNG", bbox_inches="tight", pad_inches=0.1)
plt.close(fig)
buf.seek(0)
return Image.open(buf)
# --- Convert PIL image to base64 ---
def image_to_base64(pil_img: Image.Image) -> str:
img = pil_img.copy()
with BytesIO() as buffer:
img.save(buffer, 'png')
return base64.b64encode(buffer.getvalue()).decode()
# --- Formatter for HTML rendering ---
def image_formatter(pil_img: Image.Image) -> str:
img_b64 = image_to_base64(pil_img)
return f'<img src="data:image/png;base64,{img_b64}">'
# --- Build HTML table from dictionary ---
def build_html_table(metrics_dico):
metrics_df = pd.DataFrame(metrics_dico)
return metrics_df.to_html(escape=False, formatters={"CDM Image": image_formatter})
model, tokenizer = load_model_and_tokenizer()
dataset = load_data()
bleu_metric = load_metrics()
# Section 1: Dataset Overview
st.markdown("---")
st.markdown("## π Dataset Overview")
st.markdown("""
This demo uses the [LaTeX_OCR dataset](https://huggingface.co/datasets/linxy/LaTeX_OCR) from Hugging Face π€.
Below are 10 examples showing input images and their corresponding LaTeX code.
""")
# Take 10 examples
sample_dataset = dataset.select(range(10))
# Constrain the width of the "table" to ~50% using centered columns
col_left, col_center, col_right = st.columns([1, 2, 1])
with col_center:
header1, header2 = st.columns(2, border=True)
with header1:
st.markdown("<p style='text-align: center; font-size: 24px; font-weight: bold;'>Image</p>", unsafe_allow_html=True)
with header2:
st.markdown("<p style='text-align: center; font-size: 24px; font-weight: bold;'>LaTeX Code</p>", unsafe_allow_html=True)
for i in range(10):
col1, col2 = st.columns(2, border=True)
sample = sample_dataset[i]
with col1:
st.image(sample["image"])
with col2:
st.markdown(f"`{sample['text']}`")
# ---- Section 2: Exploratory Data Analysis ----
st.markdown("---")
st.header("π Exploratory Data Analysis")
st.markdown("We analyze the distribution of LaTeX expressions in terms of complexity, length, and depth.")
df = pd.DataFrame(dataset)
sns.set_theme()
# Layout: 3 plots in a row
col1, col2, col3 = st.columns(3)
with col1:
fig, ax = plt.subplots(figsize=(3, 3))
plot = sns.countplot(data=df, x="complexity", order=["very simple", "simple", "medium", "complex", "very complex"], palette="flare", ax=ax)
plot.set_xticklabels(plot.get_xticklabels(), rotation=45, horizontalalignment='right', fontsize=8)
ax.set_title("LaTeX Formula Complexity", fontsize=8)
ax.set_xlabel("")
ax.set_ylabel("Count", fontsize=8)
st.pyplot(fig)
with col2:
fig, ax = plt.subplots(figsize=(3, 3))
sns.histplot(df["latex_length"], bins=20, kde=True, ax=ax)
ax.set_title("Length of LaTeX Code", fontsize=8)
ax.set_xlabel("Characters", fontsize=8)
ax.set_ylabel("Count", fontsize=8)
st.pyplot(fig)
with col3:
fig, ax = plt.subplots(figsize=(3, 3))
sns.histplot(df["latex_depth"], bins=5, kde=True, color="forestgreen", ax=ax)
ax.set_title("Max Brace Depth of LaTeX Code", fontsize=8)
ax.set_xlabel("Depth", fontsize=8)
ax.set_ylabel("Count", fontsize=8)
st.pyplot(fig)
# ---- Section 3: Prediction ----
st.markdown("---")
st.header("π TeXTeller Inference")
st.markdown("Upload a math image below to predict the LaTeX code using the TeXTeller model.")
# Radio button to select input source
input_option = st.radio(
"Choose an input method:",
options=["Upload your own image", "Use a sample from the dataset"],
horizontal=True
)
image = None
selected_index = None
if input_option == "Use a sample from the dataset":
selected_index = None
nb_cols = 5
for i in range(10): # Affiche 10 images
if i % nb_cols == 0:
cols = st.columns(nb_cols, border=True)
col = cols[i % nb_cols]
with col:
if st.button("Select this sample", key=f"btn_{i}"):
selected_index = i
st.image(dataset[i]["image"], use_container_width=True)
if selected_index is not None:
image = dataset[selected_index]["image"]
elif input_option == "Upload your own image":
uploaded_file = st.file_uploader("Upload a math image (JPG, PNG)...", type=["jpg", "jpeg", "png"])
if uploaded_file:
image = Image.open(uploaded_file)
image = image.convert("RGB")
# Once we have a valid image
if image:
st.divider()
st.markdown("### TeXTeller Prediction Output")
col1, col2, col3 = st.columns(3, border=True)
with col1:
st.image(image, caption="Input Image", use_container_width=True)
with st.spinner("Running TeXTeller..."):
try:
dico_result = defaultdict(list)
start = time.time()
predicted_latex = img2latex(model, tokenizer, [np.array(image)], out_format="katex")[0]
eval_time = time.time() - start
dico_result["Inference Time (s)"].append(f"{eval_time:.2f}")
with col2:
st.markdown("**Predicted LaTeX Code:**")
st.text_area(label="", value=predicted_latex, height=80)
with col3:
rendered_image = latex2image(predicted_latex)
st.image(rendered_image, caption="Rendered from Prediction", use_container_width=True)
if selected_index is not None:
ref_latex = dataset[selected_index]["text"]
predicted_latex = normalize_latex(predicted_latex)
# Compute BLEU score
bleu_results = bleu_metric.compute(predictions=[predicted_latex], references=[[ref_latex]])
bleu_score = bleu_results['bleu']
dico_result["BLEU Score"].append(bleu_score)
# Compute SSIM
pred_image = rendered_image.resize(image.size)
ssim_score = compute_ssim(image, pred_image)
dico_result["SSIM Score"].append(ssim_score)
# Compute CDM
cdm_score, cdm_recall, cdm_precision, compare_img = compute_cdm_score(ref_latex, predicted_latex)
dico_result["CDM Image"].append(compare_img)
dico_result["CDM Score"].append(cdm_score)
# Display metrics
html = build_html_table(dico_result)
st.markdown("### TeXTeller Metrics")
# CSS pour forcer le tableau Γ occuper toute la largeur
st.markdown("""
<style>
table {
width: 100% !important;
}
th, td {
text-align: center !important;
vertical-align: middle !important;
}
</style>
""", unsafe_allow_html=True)
st.markdown(html, unsafe_allow_html=True)
except Exception as e:
st.error(f"Error during prediction: {e}")
|