Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
-
from PIL import Image, ImageDraw
|
4 |
|
5 |
# Load object detection pipeline
|
6 |
model_pipeline = pipeline(
|
@@ -14,30 +14,41 @@ def predict(image):
|
|
14 |
height = int(image.height * ratio)
|
15 |
image = image.resize((width, height))
|
16 |
|
17 |
-
detections = model_pipeline(image)
|
18 |
|
19 |
-
# Draw boxes
|
20 |
draw = ImageDraw.Draw(image)
|
|
|
|
|
21 |
for det in detections:
|
22 |
box = det["box"]
|
23 |
-
label =
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
# Draw rectangle
|
27 |
draw.rectangle(
|
28 |
[(box["xmin"], box["ymin"]), (box["xmax"], box["ymax"])],
|
29 |
outline="red",
|
30 |
width=3
|
31 |
)
|
32 |
-
|
33 |
-
draw.text((box["xmin"] + 2, box["ymin"] - 10), label, fill="red")
|
34 |
|
35 |
-
return image
|
36 |
|
|
|
37 |
gr.Interface(
|
38 |
fn=predict,
|
39 |
inputs=gr.Image(type="pil", label="Upload Astrophotography Image"),
|
40 |
-
outputs=
|
|
|
|
|
|
|
41 |
title="Astrophotography Object Detector",
|
42 |
allow_flagging="manual",
|
43 |
).launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
|
5 |
# Load object detection pipeline
|
6 |
model_pipeline = pipeline(
|
|
|
14 |
height = int(image.height * ratio)
|
15 |
image = image.resize((width, height))
|
16 |
|
17 |
+
detections = model_pipeline(image, threshold=0.1)
|
18 |
|
|
|
19 |
draw = ImageDraw.Draw(image)
|
20 |
+
table_rows = []
|
21 |
+
|
22 |
for det in detections:
|
23 |
box = det["box"]
|
24 |
+
label = det["label"]
|
25 |
+
score = round(det["score"], 4)
|
26 |
+
table_rows.append({
|
27 |
+
"Class": label,
|
28 |
+
"Confidence": f"{score:.2%}",
|
29 |
+
"Xmin": int(box["xmin"]),
|
30 |
+
"Ymin": int(box["ymin"]),
|
31 |
+
"Xmax": int(box["xmax"]),
|
32 |
+
"Ymax": int(box["ymax"]),
|
33 |
+
})
|
34 |
|
|
|
35 |
draw.rectangle(
|
36 |
[(box["xmin"], box["ymin"]), (box["xmax"], box["ymax"])],
|
37 |
outline="red",
|
38 |
width=3
|
39 |
)
|
40 |
+
draw.text((box["xmin"] + 4, box["ymin"] - 12), f"{label} ({score:.2f})", fill="red")
|
|
|
41 |
|
42 |
+
return image, table_rows
|
43 |
|
44 |
+
# Gradio Interface
|
45 |
gr.Interface(
|
46 |
fn=predict,
|
47 |
inputs=gr.Image(type="pil", label="Upload Astrophotography Image"),
|
48 |
+
outputs=[
|
49 |
+
gr.Image(type="pil", label="Detected Objects"),
|
50 |
+
gr.Dataframe(headers=["Class", "Confidence", "Xmin", "Ymin", "Xmax", "Ymax"], label="Detections")
|
51 |
+
],
|
52 |
title="Astrophotography Object Detector",
|
53 |
allow_flagging="manual",
|
54 |
).launch()
|