Spaces:
Sleeping
Sleeping
File size: 1,197 Bytes
34f0c5f 5c00058 34f0c5f 5c00058 34f0c5f 5c00058 34f0c5f 5c00058 34f0c5f 5c00058 34f0c5f 5c00058 34f0c5f 5c00058 34f0c5f 5c00058 34f0c5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import gradio as gr
from transformers import pipeline
from PIL import Image, ImageDraw, ImageFont
# Load object detection pipeline
model_pipeline = pipeline(
task="object-detection",
model="bortle/autotrain-ap-obj-detector-2"
)
def predict(image):
width = 1080
ratio = width / image.width
height = int(image.height * ratio)
image = image.resize((width, height))
detections = model_pipeline(image)
# Draw boxes
draw = ImageDraw.Draw(image)
for det in detections:
box = det["box"]
label = f'{det["label"]} ({det["score"]:.2f})'
print(f"Drawing box: {box} Label: {label}") # Debug
# Draw rectangle
draw.rectangle(
[(box["xmin"], box["ymin"]), (box["xmax"], box["ymax"])],
outline="red",
width=3
)
# Optional: draw label
draw.text((box["xmin"] + 2, box["ymin"] - 10), label, fill="red")
return image
gr.Interface(
fn=predict,
inputs=gr.Image(type="pil", label="Upload Astrophotography Image"),
outputs=gr.Image(type="pil", label="Detected Objects"),
title="Astrophotography Object Detector",
allow_flagging="manual",
).launch()
|