Spaces:
Running
Running
File size: 18,881 Bytes
4d52104 4545835 4d52104 4545835 4d52104 fade8c0 4545835 4d52104 fade8c0 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 d84cd62 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 d84cd62 4d52104 4545835 d84cd62 4545835 d84cd62 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 4d52104 4545835 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 |
# /// script
# [tool.marimo.runtime]
# auto_instantiate = false
# ///
import marimo
__generated_with = "0.13.0"
app = marimo.App(width="medium")
@app.cell
def _():
import hashlib
import math
import altair as alt
import marimo as mo
import polars as pl
import spacy
from transformers import AutoTokenizer
# Load spaCy models for English and Japanese
nlp_en = spacy.load("en_core_web_md")
nlp_ja = spacy.load("ja_core_news_md")
# List of tokenizer models
llm_model_choices = [
"meta-llama/Llama-4-Scout-17B-16E-Instruct",
"google/gemma-3-27b-it",
"deepseek-ai/DeepSeek-R1",
"mistralai/Mistral-Small-3.1-24B-Instruct-2503",
"Qwen/Qwen2.5-72B-Instruct",
"google-bert/bert-large-uncased",
"openai-community/gpt2",
]
return (
AutoTokenizer,
alt,
hashlib,
llm_model_choices,
math,
mo,
nlp_en,
nlp_ja,
pl,
)
@app.cell
def _(mo):
mo.md("# Tokenization for English and Japanese")
return
@app.cell
def _(mo):
# Central state for the text input content
get_text_content, set_text_content = mo.state("")
return get_text_content, set_text_content
@app.cell
def _(mo):
# Placeholder texts
en_placeholder = """
Mrs. Ferrars died on the night of the 16th–17th September—a Thursday. I was sent for at eight o’clock on the morning of Friday the 17th. There was nothing to be done. She had been dead some hours.
""".strip()
ja_placeholder = """
吾輩は猫である。名前はまだ無い。
どこで生れたかとんと見当がつかぬ。何でも薄暗いじめじめした所でニャーニャー泣いていた事だけは記憶している。
""".strip()
# Create UI element for language selection
language_selector = mo.ui.radio(
options=["English", "Japanese"], value="English", label="Language"
)
# Return selector and placeholders
return en_placeholder, ja_placeholder, language_selector
@app.cell
def _(
en_placeholder,
get_text_content,
ja_placeholder,
language_selector,
mo,
set_text_content,
):
# Define text_input dynamically based on language
current_placeholder = (
en_placeholder if language_selector.value == "English" else ja_placeholder
)
text_input = mo.ui.text_area(
# Read value from state
value=get_text_content(),
label="Enter text",
placeholder=current_placeholder,
full_width=True,
# Update state on user input
on_change=lambda v: set_text_content(v),
)
return current_placeholder, text_input
@app.cell
def _(current_placeholder, mo, set_text_content):
def apply_placeholder():
set_text_content(current_placeholder)
apply_placeholder_button = mo.ui.button(
label="Use Placeholder Text", on_click=lambda _: apply_placeholder()
)
return (apply_placeholder_button,)
@app.cell
def _(apply_placeholder_button, language_selector, mo, text_input):
mo.vstack(
[
text_input,
mo.hstack([language_selector, apply_placeholder_button], justify="start"),
]
)
return
@app.cell
def _(get_text_content, language_selector, mo, nlp_en, nlp_ja):
# Analyze text using spaCy based on selected language
# Read text from state
current_text = get_text_content()
if language_selector.value == "English":
doc = nlp_en(current_text)
else:
doc = nlp_ja(current_text)
# Tokenized version and count
tokenized_text = [token.text for token in doc]
token_count = len(tokenized_text)
mo.md(
f"**Tokenized Text:** {' | '.join(tokenized_text)}\n\n**Token Count:** {token_count}"
)
return current_text, doc
@app.cell
def _(doc, mo, pl):
# Create a polars DataFrame with token attributes
token_data = pl.DataFrame(
{
"Token": [token.text for token in doc],
"Lemma": [token.lemma_ for token in doc],
"POS": [token.pos_ for token in doc],
"Tag": [token.tag_ for token in doc],
"Morph": [
str(token.morph) for token in doc
], # To be more precise, this should be merged back in via .to_dict()
"Token Position": list(range(len(doc))),
"Sentence Number": [
i for i, sent in enumerate(doc.sents) for token in sent
],
}
)
mo.ui.dataframe(token_data, page_size=50)
return (token_data,)
@app.cell
def _(mo):
# Create UI element for selecting the column to visualize
column_selector = mo.ui.dropdown(
options=["POS", "Tag", "Lemma", "Token", "Morph"],
value="POS",
label="Select column to visualize",
)
column_selector
return (column_selector,)
@app.cell
def _(alt, column_selector, mo, token_data):
mo.stop(token_data.is_empty(), "Please set input text.")
selected_column = column_selector.value
# Calculate value counts for the selected column
counts_df = (
token_data[selected_column]
.value_counts()
.sort(by=["count", selected_column], descending=[True, False])
)
chart = (
alt.Chart(counts_df)
.mark_bar()
.encode(
x=alt.X("count", title="Frequency"),
y=alt.Y(selected_column, title=selected_column, sort=None),
tooltip=[selected_column, "count"],
)
.properties(title=f"{selected_column} Distribution")
.interactive()
)
mo.ui.altair_chart(chart)
return
@app.cell
def _(llm_model_choices, mo):
# UI for selecting the LLM tokenizer model
llm_tokenizer_selector = mo.ui.dropdown(
options=llm_model_choices,
value=llm_model_choices[-1], # Default to gpt2 for faster loading initially
label="Select LLM Tokenizer Model",
)
llm_tokenizer_selector
return (llm_tokenizer_selector,)
@app.cell
def _(AutoTokenizer, llm_tokenizer_selector):
# Load the selected tokenizer
# Adapted code from: https://huggingface.co/spaces/barttee/tokenizers/blob/main/app.py
# This cell will re-run when llm_tokenizer_selector.value changes
# Marimo caches the result implicitly based on inputs
selected_model_name = llm_tokenizer_selector.value
tokenizer = AutoTokenizer.from_pretrained(selected_model_name)
return (tokenizer,)
@app.cell
def _(math):
# Function to calculate token statistics
def get_token_stats(tokens: list, original_text: str) -> dict:
"""Calculate enhanced statistics about the tokens."""
if not tokens:
return { # Return default structure even for empty input
"basic_stats": {
"total_tokens": 0,
"unique_tokens": 0,
"compression_ratio": 0,
"space_tokens": 0,
"newline_tokens": 0,
"special_tokens": 0,
"punctuation_tokens": 0,
"unique_percentage": 0,
},
"length_stats": {
"avg_length": 0,
"std_dev": 0,
"min_length": 0,
"max_length": 0,
"median_length": 0,
},
}
total_tokens = len(tokens)
unique_tokens = len(set(tokens))
# Handle potential division by zero if total_tokens is 0 (already checked by `if not tokens`)
avg_length = (
sum(len(t) for t in tokens) / total_tokens if total_tokens > 0 else 0
)
# Handle potential division by zero if total_tokens is 0
compression_ratio = len(original_text) / total_tokens if total_tokens > 0 else 0
# Token type analysis (Note: Heuristics might vary between tokenizers)
# Using startswith(('Ġ', ' ')) covers common space markers like SentencePiece's U+2581 and BPE's 'Ġ'
space_tokens = sum(1 for t in tokens if t.startswith(("Ġ", " ")))
# Check for common newline representations
newline_tokens = sum(
1 for t in tokens if "Ċ" in t or t == "\n" or t == "<0x0A>"
)
# A broader definition for special tokens based on common patterns (control tokens)
special_tokens = sum(
1
for t in tokens
if (t.startswith("<") and t.endswith(">"))
or (t.startswith("[") and t.endswith("]"))
)
# Simple punctuation check (might overlap with other categories, focuses on single char punct)
punctuation_tokens = sum(
1
for t in tokens
if len(t) == 1 and not t.isalnum() and t not in [" ", "\n", "Ġ", "Ċ"]
)
# Length distribution
lengths = [len(t) for t in tokens]
if not lengths: # Should not happen if tokens is not empty, but safe check
return {
"basic_stats": {
"total_tokens": 0,
"unique_tokens": 0,
"compression_ratio": 0,
"space_tokens": 0,
"newline_tokens": 0,
"special_tokens": 0,
"punctuation_tokens": 0,
"unique_percentage": 0,
},
"length_stats": {
"avg_length": 0,
"std_dev": 0,
"min_length": 0,
"max_length": 0,
"median_length": 0,
},
}
mean_length = sum(lengths) / len(lengths)
variance = sum((x - mean_length) ** 2 for x in lengths) / len(lengths)
std_dev = math.sqrt(variance)
sorted_lengths = sorted(lengths)
# Handle case where lengths list might be empty after filtering, though unlikely here
median_length = sorted_lengths[len(lengths) // 2] if lengths else 0
return {
"basic_stats": {
"total_tokens": total_tokens,
"unique_tokens": unique_tokens,
"compression_ratio": round(compression_ratio, 2),
"space_tokens": space_tokens,
"newline_tokens": newline_tokens,
"special_tokens": special_tokens,
"punctuation_tokens": punctuation_tokens,
"unique_percentage": round(unique_tokens / total_tokens * 100, 1)
if total_tokens > 0
else 0,
},
"length_stats": {
"avg_length": round(avg_length, 2),
"std_dev": round(std_dev, 2),
"min_length": min(lengths) if lengths else 0,
"max_length": max(lengths) if lengths else 0,
"median_length": median_length,
},
}
return (get_token_stats,)
@app.cell
def _(hashlib):
def get_varied_color(token: str) -> dict:
"""Generate vibrant colors with HSL for better visual distinction."""
# Use a fixed salt or seed if you want consistent colors across runs for the same token
token_hash = hashlib.md5(token.encode()).hexdigest()
hue = int(token_hash[:3], 16) % 360
saturation = 70 + (int(token_hash[3:5], 16) % 20) # Saturation between 70-90%
lightness = 80 + (
int(token_hash[5:7], 16) % 10
) # Lightness between 80-90% (light background)
# Ensure text color contrasts well with the light background
text_lightness = 20 # Dark text for light background
return {
"background": f"hsl({hue}, {saturation}%, {lightness}%)",
"text": f"hsl({hue}, {saturation}%, {text_lightness}%)",
}
return (get_varied_color,)
@app.function
def fix_token(token: str) -> str:
"""Fix token for display with improved space visualization."""
# Replace SentencePiece space marker U+2581 with a middle dot
token = token.replace(" ", "·")
# Replace BPE space marker 'Ġ' with a middle dot
if token.startswith("Ġ"):
space_count = token.count("Ġ")
return "·" * space_count + token[space_count:]
# Replace newline markers for display
token = token.replace(
"Ċ", "↵\n"
) # Replace newline marker with symbol and actual newline
token = token.replace("<0x0A>", "↵\n") # Handle byte representation of newline
return token
@app.function
def get_tokenizer_info(tokenizer):
"""
Extract useful information from a tokenizer.
Returns a dictionary with tokenizer details.
"""
info = {}
try:
# Get vocabulary size (dictionary size)
if hasattr(tokenizer, "vocab_size"):
info["vocab_size"] = tokenizer.vocab_size
elif hasattr(tokenizer, "get_vocab"):
info["vocab_size"] = len(tokenizer.get_vocab())
# Get model max length if available
if (
hasattr(tokenizer, "model_max_length")
and tokenizer.model_max_length < 1000000
): # Sanity check for realistic values
info["model_max_length"] = tokenizer.model_max_length
else:
info["model_max_length"] = "Not specified or very large"
# Check tokenizer type
info["tokenizer_type"] = tokenizer.__class__.__name__
# Get special tokens using the recommended attributes/methods
special_tokens = {}
# Prefer all_special_tokens if available
if hasattr(tokenizer, "all_special_tokens"):
for token in tokenizer.all_special_tokens:
# Try to find the attribute name corresponding to the token value
token_name = "unknown_special_token" # Default name
for attr_name in [
"pad_token",
"eos_token",
"bos_token",
"sep_token",
"cls_token",
"unk_token",
"mask_token",
]:
if (
hasattr(tokenizer, attr_name)
and getattr(tokenizer, attr_name) == token
):
token_name = attr_name
break
if token and str(token).strip():
special_tokens[token_name] = str(token)
else:
# Fallback to checking individual attributes
for token_name in [
"pad_token",
"eos_token",
"bos_token",
"sep_token",
"cls_token",
"unk_token",
"mask_token",
]:
if (
hasattr(tokenizer, token_name)
and getattr(tokenizer, token_name) is not None
):
token_value = getattr(tokenizer, token_name)
if token_value and str(token_value).strip():
special_tokens[token_name] = str(token_value)
info["special_tokens"] = special_tokens if special_tokens else "None found"
except Exception as e:
info["error"] = f"Error extracting tokenizer info: {str(e)}"
return info
@app.cell
def _(mo):
show_ids_switch = mo.ui.switch(label="Show Token IDs instead of Text", value=False)
return (show_ids_switch,)
@app.cell
def _(
current_text,
get_token_stats,
get_varied_color,
llm_tokenizer_selector,
mo,
show_ids_switch,
tokenizer,
):
# --- Tokenization and Data Preparation ---
# Get tokenizer metadata
tokenizer_info = get_tokenizer_info(tokenizer)
# Tokenize the input text
# Use tokenize to get string representations for analysis and display
all_tokens = tokenizer.tokenize(current_text)
total_token_count = len(all_tokens)
# Limit the number of tokens for display to avoid browser slowdown
display_limit = 1000
display_tokens = all_tokens[:display_limit]
display_limit_reached = total_token_count > display_limit
# Generate data for visualization
llm_token_data = []
for idx, token in enumerate(display_tokens):
colors = get_varied_color(token)
fixed_token_display = fix_token(token) # Apply fixes for display
# Handle potential errors during ID conversion (e.g., unknown tokens if not handled by tokenizer)
try:
token_id = tokenizer.convert_tokens_to_ids(token)
except KeyError:
token_id = (
tokenizer.unk_token_id if hasattr(tokenizer, "unk_token_id") else -1
) # Use UNK id or -1
llm_token_data.append(
{
"original": token,
"display": fixed_token_display,
"colors": colors,
"is_newline": "↵"
in fixed_token_display, # Check if it represents a newline
"token_id": token_id,
"token_index": idx,
}
)
# Calculate statistics using the full token list
token_stats = get_token_stats(all_tokens, current_text)
# Construct HTML for colored tokens
html_parts = []
for item in llm_token_data:
# Use pre-wrap to respect spaces and newlines within the token display
style = f"background-color: {item['colors']['background']}; color: {item['colors']['text']}; padding: 1px 3px; margin: 1px; border-radius: 3px; display: inline-block; white-space: pre-wrap; line-height: 1.4;"
# Add title attribute for hover info (original token + ID)
title = f"Original: {item['original']}\nID: {item['token_id']}"
display_content = (
str(item["token_id"]) if show_ids_switch.value else item["display"]
)
html_parts.append(
f'<span style="{style}" title="{title}">{display_content}</span>'
)
token_viz_html = mo.Html(
f'<div style="line-height: 1.6;">{"".join(html_parts)}</div>'
)
basic_stats = token_stats["basic_stats"]
length_stats = token_stats["length_stats"]
basic_stats_md = "**Basic Stats:**\n\n" + "\n".join(
f"- **{key.replace('_', ' ').title()}:** `{value}`"
for key, value in basic_stats.items()
)
length_stats_md = "**Length (Character) Stats:**\n\n" + "\n".join(
f"- **{key.replace('_', ' ').title()}:** `{value}`"
for key, value in length_stats.items()
)
mo.md(f"""# LLM tokenizer: {llm_tokenizer_selector.value}
{show_ids_switch}
## Tokenizer output
{mo.as_html(token_viz_html)}
## Token Statistics
{basic_stats_md}
{length_stats_md}
""")
return
@app.cell
def _():
return
if __name__ == "__main__":
app.run()
|