File size: 18,881 Bytes
4d52104
 
 
 
 
4545835
 
4d52104
 
4545835
 
 
4d52104
fade8c0
 
 
 
4545835
4d52104
fade8c0
4d52104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4545835
 
 
4d52104
 
 
4545835
 
 
4d52104
 
 
 
4545835
 
4d52104
 
 
 
 
 
 
 
 
 
 
 
 
 
4545835
 
4d52104
 
4545835
 
4d52104
 
 
 
 
 
 
 
 
 
 
 
4545835
4d52104
 
 
 
 
 
 
 
 
 
4545835
 
4d52104
 
 
 
4545835
4d52104
 
4545835
4d52104
4545835
 
 
4d52104
 
 
 
 
 
4545835
 
 
 
4d52104
 
 
 
 
 
 
 
 
 
 
 
 
 
4545835
4d52104
4545835
4d52104
4545835
 
4d52104
 
 
 
4545835
4d52104
 
 
 
 
 
 
 
d84cd62
 
 
4545835
 
 
4d52104
 
4545835
4d52104
 
 
 
 
 
 
 
4545835
 
4d52104
 
4545835
 
4d52104
 
 
 
 
 
 
 
 
 
 
4545835
4d52104
 
 
 
 
 
 
 
 
 
4545835
4d52104
4545835
 
 
 
4d52104
 
 
 
 
 
 
 
 
4545835
 
 
4d52104
 
 
 
 
 
 
 
4545835
 
 
4d52104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4545835
4d52104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4545835
4d52104
4545835
 
 
4d52104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4545835
4d52104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4545835
 
4d52104
 
 
 
4545835
 
4d52104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4545835
4d52104
 
 
 
 
 
 
 
 
 
d84cd62
 
 
4d52104
 
 
4545835
d84cd62
 
 
4545835
d84cd62
 
4545835
4d52104
 
 
 
4545835
4d52104
 
 
 
4545835
4d52104
4545835
4d52104
4545835
4d52104
4545835
4d52104
4545835
4d52104
4545835
4d52104
4545835
4d52104
4545835
4d52104
4545835
 
 
 
4d52104
4545835
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
# /// script
# [tool.marimo.runtime]
# auto_instantiate = false
# ///

import marimo

__generated_with = "0.13.0"
app = marimo.App(width="medium")


@app.cell
def _():
    import hashlib
    import math

    import altair as alt
    import marimo as mo
    import polars as pl
    import spacy
    from transformers import AutoTokenizer

    # Load spaCy models for English and Japanese
    nlp_en = spacy.load("en_core_web_md")
    nlp_ja = spacy.load("ja_core_news_md")

    # List of tokenizer models
    llm_model_choices = [
        "meta-llama/Llama-4-Scout-17B-16E-Instruct",
        "google/gemma-3-27b-it",
        "deepseek-ai/DeepSeek-R1",
        "mistralai/Mistral-Small-3.1-24B-Instruct-2503",
        "Qwen/Qwen2.5-72B-Instruct",
        "google-bert/bert-large-uncased",
        "openai-community/gpt2",
    ]

    return (
        AutoTokenizer,
        alt,
        hashlib,
        llm_model_choices,
        math,
        mo,
        nlp_en,
        nlp_ja,
        pl,
    )


@app.cell
def _(mo):
    mo.md("# Tokenization for English and Japanese")
    return


@app.cell
def _(mo):
    # Central state for the text input content
    get_text_content, set_text_content = mo.state("")
    return get_text_content, set_text_content


@app.cell
def _(mo):
    # Placeholder texts
    en_placeholder = """
    Mrs. Ferrars died on the night of the 16th⁠–⁠17th September⁠—a Thursday. I was sent for at eight o’clock on the morning of Friday the 17th. There was nothing to be done. She had been dead some hours.
    """.strip()
    ja_placeholder = """
    吾輩は猫である。名前はまだ無い。
     どこで生れたかとんと見当がつかぬ。何でも薄暗いじめじめした所でニャーニャー泣いていた事だけは記憶している。
    """.strip()

    # Create UI element for language selection
    language_selector = mo.ui.radio(
        options=["English", "Japanese"], value="English", label="Language"
    )

    # Return selector and placeholders
    return en_placeholder, ja_placeholder, language_selector


@app.cell
def _(
    en_placeholder,
    get_text_content,
    ja_placeholder,
    language_selector,
    mo,
    set_text_content,
):
    # Define text_input dynamically based on language
    current_placeholder = (
        en_placeholder if language_selector.value == "English" else ja_placeholder
    )
    text_input = mo.ui.text_area(
        # Read value from state
        value=get_text_content(),
        label="Enter text",
        placeholder=current_placeholder,
        full_width=True,
        # Update state on user input
        on_change=lambda v: set_text_content(v),
    )
    return current_placeholder, text_input


@app.cell
def _(current_placeholder, mo, set_text_content):
    def apply_placeholder():
        set_text_content(current_placeholder)

    apply_placeholder_button = mo.ui.button(
        label="Use Placeholder Text", on_click=lambda _: apply_placeholder()
    )
    return (apply_placeholder_button,)


@app.cell
def _(apply_placeholder_button, language_selector, mo, text_input):
    mo.vstack(
        [
            text_input,
            mo.hstack([language_selector, apply_placeholder_button], justify="start"),
        ]
    )
    return


@app.cell
def _(get_text_content, language_selector, mo, nlp_en, nlp_ja):
    # Analyze text using spaCy based on selected language
    # Read text from state
    current_text = get_text_content()
    if language_selector.value == "English":
        doc = nlp_en(current_text)
    else:
        doc = nlp_ja(current_text)

    # Tokenized version and count
    tokenized_text = [token.text for token in doc]
    token_count = len(tokenized_text)

    mo.md(
        f"**Tokenized Text:** {' | '.join(tokenized_text)}\n\n**Token Count:** {token_count}"
    )
    return current_text, doc


@app.cell
def _(doc, mo, pl):
    # Create a polars DataFrame with token attributes
    token_data = pl.DataFrame(
        {
            "Token": [token.text for token in doc],
            "Lemma": [token.lemma_ for token in doc],
            "POS": [token.pos_ for token in doc],
            "Tag": [token.tag_ for token in doc],
            "Morph": [
                str(token.morph) for token in doc
            ],  # To be more precise, this should be merged back in via .to_dict()
            "Token Position": list(range(len(doc))),
            "Sentence Number": [
                i for i, sent in enumerate(doc.sents) for token in sent
            ],
        }
    )

    mo.ui.dataframe(token_data, page_size=50)
    return (token_data,)


@app.cell
def _(mo):
    # Create UI element for selecting the column to visualize
    column_selector = mo.ui.dropdown(
        options=["POS", "Tag", "Lemma", "Token", "Morph"],
        value="POS",
        label="Select column to visualize",
    )

    column_selector
    return (column_selector,)


@app.cell
def _(alt, column_selector, mo, token_data):
    mo.stop(token_data.is_empty(), "Please set input text.")

    selected_column = column_selector.value
    # Calculate value counts for the selected column
    counts_df = (
        token_data[selected_column]
        .value_counts()
        .sort(by=["count", selected_column], descending=[True, False])
    )

    chart = (
        alt.Chart(counts_df)
        .mark_bar()
        .encode(
            x=alt.X("count", title="Frequency"),
            y=alt.Y(selected_column, title=selected_column, sort=None),
            tooltip=[selected_column, "count"],
        )
        .properties(title=f"{selected_column} Distribution")
        .interactive()
    )
    mo.ui.altair_chart(chart)
    return


@app.cell
def _(llm_model_choices, mo):
    # UI for selecting the LLM tokenizer model
    llm_tokenizer_selector = mo.ui.dropdown(
        options=llm_model_choices,
        value=llm_model_choices[-1],  # Default to gpt2 for faster loading initially
        label="Select LLM Tokenizer Model",
    )
    llm_tokenizer_selector
    return (llm_tokenizer_selector,)


@app.cell
def _(AutoTokenizer, llm_tokenizer_selector):
    # Load the selected tokenizer
    # Adapted code from: https://huggingface.co/spaces/barttee/tokenizers/blob/main/app.py
    # This cell will re-run when llm_tokenizer_selector.value changes
    # Marimo caches the result implicitly based on inputs
    selected_model_name = llm_tokenizer_selector.value
    tokenizer = AutoTokenizer.from_pretrained(selected_model_name)
    return (tokenizer,)


@app.cell
def _(math):
    # Function to calculate token statistics
    def get_token_stats(tokens: list, original_text: str) -> dict:
        """Calculate enhanced statistics about the tokens."""
        if not tokens:
            return {  # Return default structure even for empty input
                "basic_stats": {
                    "total_tokens": 0,
                    "unique_tokens": 0,
                    "compression_ratio": 0,
                    "space_tokens": 0,
                    "newline_tokens": 0,
                    "special_tokens": 0,
                    "punctuation_tokens": 0,
                    "unique_percentage": 0,
                },
                "length_stats": {
                    "avg_length": 0,
                    "std_dev": 0,
                    "min_length": 0,
                    "max_length": 0,
                    "median_length": 0,
                },
            }

        total_tokens = len(tokens)
        unique_tokens = len(set(tokens))
        # Handle potential division by zero if total_tokens is 0 (already checked by `if not tokens`)
        avg_length = (
            sum(len(t) for t in tokens) / total_tokens if total_tokens > 0 else 0
        )
        # Handle potential division by zero if total_tokens is 0
        compression_ratio = len(original_text) / total_tokens if total_tokens > 0 else 0

        # Token type analysis (Note: Heuristics might vary between tokenizers)
        # Using startswith(('Ġ', ' ')) covers common space markers like SentencePiece's U+2581 and BPE's 'Ġ'
        space_tokens = sum(1 for t in tokens if t.startswith(("Ġ", " ")))
        # Check for common newline representations
        newline_tokens = sum(
            1 for t in tokens if "Ċ" in t or t == "\n" or t == "<0x0A>"
        )
        # A broader definition for special tokens based on common patterns (control tokens)
        special_tokens = sum(
            1
            for t in tokens
            if (t.startswith("<") and t.endswith(">"))
            or (t.startswith("[") and t.endswith("]"))
        )
        # Simple punctuation check (might overlap with other categories, focuses on single char punct)
        punctuation_tokens = sum(
            1
            for t in tokens
            if len(t) == 1 and not t.isalnum() and t not in [" ", "\n", "Ġ", "Ċ"]
        )

        # Length distribution
        lengths = [len(t) for t in tokens]
        if not lengths:  # Should not happen if tokens is not empty, but safe check
            return {
                "basic_stats": {
                    "total_tokens": 0,
                    "unique_tokens": 0,
                    "compression_ratio": 0,
                    "space_tokens": 0,
                    "newline_tokens": 0,
                    "special_tokens": 0,
                    "punctuation_tokens": 0,
                    "unique_percentage": 0,
                },
                "length_stats": {
                    "avg_length": 0,
                    "std_dev": 0,
                    "min_length": 0,
                    "max_length": 0,
                    "median_length": 0,
                },
            }

        mean_length = sum(lengths) / len(lengths)
        variance = sum((x - mean_length) ** 2 for x in lengths) / len(lengths)
        std_dev = math.sqrt(variance)
        sorted_lengths = sorted(lengths)
        # Handle case where lengths list might be empty after filtering, though unlikely here
        median_length = sorted_lengths[len(lengths) // 2] if lengths else 0

        return {
            "basic_stats": {
                "total_tokens": total_tokens,
                "unique_tokens": unique_tokens,
                "compression_ratio": round(compression_ratio, 2),
                "space_tokens": space_tokens,
                "newline_tokens": newline_tokens,
                "special_tokens": special_tokens,
                "punctuation_tokens": punctuation_tokens,
                "unique_percentage": round(unique_tokens / total_tokens * 100, 1)
                if total_tokens > 0
                else 0,
            },
            "length_stats": {
                "avg_length": round(avg_length, 2),
                "std_dev": round(std_dev, 2),
                "min_length": min(lengths) if lengths else 0,
                "max_length": max(lengths) if lengths else 0,
                "median_length": median_length,
            },
        }

    return (get_token_stats,)


@app.cell
def _(hashlib):
    def get_varied_color(token: str) -> dict:
        """Generate vibrant colors with HSL for better visual distinction."""
        # Use a fixed salt or seed if you want consistent colors across runs for the same token
        token_hash = hashlib.md5(token.encode()).hexdigest()
        hue = int(token_hash[:3], 16) % 360
        saturation = 70 + (int(token_hash[3:5], 16) % 20)  # Saturation between 70-90%
        lightness = 80 + (
            int(token_hash[5:7], 16) % 10
        )  # Lightness between 80-90% (light background)
        # Ensure text color contrasts well with the light background
        text_lightness = 20  # Dark text for light background

        return {
            "background": f"hsl({hue}, {saturation}%, {lightness}%)",
            "text": f"hsl({hue}, {saturation}%, {text_lightness}%)",
        }

    return (get_varied_color,)


@app.function
def fix_token(token: str) -> str:
    """Fix token for display with improved space visualization."""
    # Replace SentencePiece space marker U+2581 with a middle dot
    token = token.replace(" ", "·")
    # Replace BPE space marker 'Ġ' with a middle dot
    if token.startswith("Ġ"):
        space_count = token.count("Ġ")
        return "·" * space_count + token[space_count:]
    # Replace newline markers for display
    token = token.replace(
        "Ċ", "↵\n"
    )  # Replace newline marker with symbol and actual newline
    token = token.replace("<0x0A>", "↵\n")  # Handle byte representation of newline
    return token


@app.function
def get_tokenizer_info(tokenizer):
    """
    Extract useful information from a tokenizer.
    Returns a dictionary with tokenizer details.
    """

    info = {}
    try:
        # Get vocabulary size (dictionary size)
        if hasattr(tokenizer, "vocab_size"):
            info["vocab_size"] = tokenizer.vocab_size
        elif hasattr(tokenizer, "get_vocab"):
            info["vocab_size"] = len(tokenizer.get_vocab())

        # Get model max length if available
        if (
            hasattr(tokenizer, "model_max_length")
            and tokenizer.model_max_length < 1000000
        ):  # Sanity check for realistic values
            info["model_max_length"] = tokenizer.model_max_length
        else:
            info["model_max_length"] = "Not specified or very large"

        # Check tokenizer type
        info["tokenizer_type"] = tokenizer.__class__.__name__

        # Get special tokens using the recommended attributes/methods
        special_tokens = {}
        # Prefer all_special_tokens if available
        if hasattr(tokenizer, "all_special_tokens"):
            for token in tokenizer.all_special_tokens:
                # Try to find the attribute name corresponding to the token value
                token_name = "unknown_special_token"  # Default name
                for attr_name in [
                    "pad_token",
                    "eos_token",
                    "bos_token",
                    "sep_token",
                    "cls_token",
                    "unk_token",
                    "mask_token",
                ]:
                    if (
                        hasattr(tokenizer, attr_name)
                        and getattr(tokenizer, attr_name) == token
                    ):
                        token_name = attr_name
                        break
                if token and str(token).strip():
                    special_tokens[token_name] = str(token)
        else:
            # Fallback to checking individual attributes
            for token_name in [
                "pad_token",
                "eos_token",
                "bos_token",
                "sep_token",
                "cls_token",
                "unk_token",
                "mask_token",
            ]:
                if (
                    hasattr(tokenizer, token_name)
                    and getattr(tokenizer, token_name) is not None
                ):
                    token_value = getattr(tokenizer, token_name)
                    if token_value and str(token_value).strip():
                        special_tokens[token_name] = str(token_value)

        info["special_tokens"] = special_tokens if special_tokens else "None found"

    except Exception as e:
        info["error"] = f"Error extracting tokenizer info: {str(e)}"

    return info


@app.cell
def _(mo):
    show_ids_switch = mo.ui.switch(label="Show Token IDs instead of Text", value=False)
    return (show_ids_switch,)


@app.cell
def _(
    current_text,
    get_token_stats,
    get_varied_color,
    llm_tokenizer_selector,
    mo,
    show_ids_switch,
    tokenizer,
):
    # --- Tokenization and Data Preparation ---

    # Get tokenizer metadata
    tokenizer_info = get_tokenizer_info(tokenizer)

    # Tokenize the input text
    # Use tokenize to get string representations for analysis and display
    all_tokens = tokenizer.tokenize(current_text)
    total_token_count = len(all_tokens)

    # Limit the number of tokens for display to avoid browser slowdown
    display_limit = 1000
    display_tokens = all_tokens[:display_limit]
    display_limit_reached = total_token_count > display_limit

    # Generate data for visualization
    llm_token_data = []
    for idx, token in enumerate(display_tokens):
        colors = get_varied_color(token)
        fixed_token_display = fix_token(token)  # Apply fixes for display
        # Handle potential errors during ID conversion (e.g., unknown tokens if not handled by tokenizer)
        try:
            token_id = tokenizer.convert_tokens_to_ids(token)
        except KeyError:
            token_id = (
                tokenizer.unk_token_id if hasattr(tokenizer, "unk_token_id") else -1
            )  # Use UNK id or -1

        llm_token_data.append(
            {
                "original": token,
                "display": fixed_token_display,
                "colors": colors,
                "is_newline": "↵"
                in fixed_token_display,  # Check if it represents a newline
                "token_id": token_id,
                "token_index": idx,
            }
        )

    # Calculate statistics using the full token list
    token_stats = get_token_stats(all_tokens, current_text)

    # Construct HTML for colored tokens
    html_parts = []
    for item in llm_token_data:
        # Use pre-wrap to respect spaces and newlines within the token display
        style = f"background-color: {item['colors']['background']}; color: {item['colors']['text']}; padding: 1px 3px; margin: 1px; border-radius: 3px; display: inline-block; white-space: pre-wrap; line-height: 1.4;"
        # Add title attribute for hover info (original token + ID)
        title = f"Original: {item['original']}\nID: {item['token_id']}"
        display_content = (
            str(item["token_id"]) if show_ids_switch.value else item["display"]
        )
        html_parts.append(
            f'<span style="{style}" title="{title}">{display_content}</span>'
        )

    token_viz_html = mo.Html(
        f'<div style="line-height: 1.6;">{"".join(html_parts)}</div>'
    )

    basic_stats = token_stats["basic_stats"]
    length_stats = token_stats["length_stats"]

    basic_stats_md = "**Basic Stats:**\n\n" + "\n".join(
        f"-   **{key.replace('_', ' ').title()}:** `{value}`"
        for key, value in basic_stats.items()
    )

    length_stats_md = "**Length (Character) Stats:**\n\n" + "\n".join(
        f"-   **{key.replace('_', ' ').title()}:** `{value}`"
        for key, value in length_stats.items()
    )

    mo.md(f"""# LLM tokenizer: {llm_tokenizer_selector.value}

    {show_ids_switch}

    ## Tokenizer output

    {mo.as_html(token_viz_html)}

    ## Token Statistics

    {basic_stats_md}

    {length_stats_md}

    """)
    return


@app.cell
def _():
    return


if __name__ == "__main__":
    app.run()