Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer | |
import torch | |
model_id = "thrishala/mental_health_chatbot" | |
try: | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="cpu", | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
max_memory={"cpu": "15GB"}, | |
offload_folder="offload", | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
tokenizer.model_max_length = 256 # Set maximum length | |
pipe = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
torch_dtype=torch.float16, | |
num_return_sequences=1, | |
do_sample=False, | |
truncation=True, | |
max_new_tokens=128 | |
) | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
exit() | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
prompt = f"{system_message}\n" | |
for user_msg, bot_msg in history: | |
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n" | |
prompt += f"User: {message}\nAssistant:" | |
try: | |
response = pipe( | |
prompt, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=False, | |
pad_token_id=tokenizer.eos_token_id | |
)[0]["generated_text"] | |
bot_response = response.split("Assistant:")[-1].strip() | |
yield bot_response | |
except Exception as e: | |
print(f"Error during generation: {e}") | |
yield "An error occurred during generation." | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are a friendly and helpful mental health chatbot.", | |
label="System message", | |
), | |
gr.Slider(minimum=1, maximum=128, value=128, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", | |
), | |
], | |
chatbot=gr.Chatbot(type="messages"), # Updated to new format | |
) | |
if __name__ == "__main__": | |
demo.launch() |