testing / app.py
bobpopboom's picture
deep seek help plz xD
b84cd4b verified
raw
history blame
2.09 kB
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import torch
model_id = "thrishala/mental_health_chatbot"
try:
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
load_in_8bit=True,
device_map="auto",
torch_dtype=torch.float16
)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
except Exception as e:
print(f"Error loading model: {e}")
exit()
def respond(
message,
history,
system_message,
max_tokens,
temperature,
top_p,
):
# Construct the prompt with clear separation
prompt = f"{system_message}\n"
for user_msg, bot_msg in history:
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n"
prompt += f"User: {message}\nAssistant:"
try:
response = pipe(
prompt,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
eos_token_id=tokenizer.eos_token_id, # Use EOS token to stop generation
)[0]["generated_text"]
# Extract only the new assistant response after the last Assistant: in the prompt
bot_response = response[len(prompt):].split("User:")[0].strip() # Take text after prompt and before next User
yield bot_response
except Exception as e:
print(f"Error during generation: {e}")
yield "An error occurred."
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are a friendly and helpful mental health chatbot.",
label="System message",
),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()