testing / app.py
bobpopboom's picture
Update app.py
81ab351 verified
raw
history blame
3.1 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
model_id = "thrishala/mental_health_chatbot"
try:
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map=device, # Use the determined device
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
max_memory={device: "15GB"}, # Use device-specific memory management
offload_folder="offload",
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.model_max_length = 512 # Set maximum length
except Exception as e:
print(f"Error loading model: {e}")
exit()
def generate_text(prompt, max_new_tokens=128):
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
output = model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=False, # Or True for sampling
eos_token_id=tokenizer.eos_token_id,
)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return generated_text
def generate_text_streaming(prompt, max_new_tokens=128):
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
for i in range(max_new_tokens):
output = model.generate(
input_ids=input_ids,
max_new_tokens=1, # Generate only 1 new token at a time
do_sample=False, # Or True for sampling
eos_token_id=tokenizer.eos_token_id,
return_dict=True, #Return a dictionary
output_scores=True #Return the scores
)
generated_token = tokenizer.decode(output.logits[0][-1].argmax(), skip_special_tokens=True) #Decode the last token only
yield generated_token #Yield the last token
input_ids = torch.cat([input_ids, output.sequences[:, -1:]], dim=-1) #Append the new token to the input
if output.sequences[0][-1] == tokenizer.eos_token_id: #Check if the end of sequence token was generated
break #Break the loop
def respond(message, history, system_message, max_tokens):
prompt = f"{system_message}\n"
for user_msg, bot_msg in history:
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n"
prompt += f"User: {message}\nAssistant:"
try:
for token in generate_text_streaming(prompt, max_tokens): #Iterate over the generator
yield token #Yield each token individually
except Exception as e:
print(f"Error during generation: {e}")
yield "An error occurred."
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are a friendly and helpful mental health chatbot.",
label="System message",
),
gr.Slider(minimum=1, maximum=128, value=32, step=10, label="Max new tokens"),
],
)
if __name__ == "__main__":
demo.launch()