import streamlit as st import pickle import os import json from collections import defaultdict from langchain.vectorstores import FAISS from langchain.embeddings.huggingface import HuggingFaceEmbeddings from rank_bm25 import BM25Okapi # Constants BASE_DIR = "built_index" VECTOR_STORE_DIR = os.path.join(BASE_DIR, "vector_store") BM25_INDEX_FILE = os.path.join(BASE_DIR, "bm25_index.pkl") SEARCH_INDEX_FILE = os.path.join(BASE_DIR, "search_index.json") # Load embedding model @st.cache_resource def load_embeddings(): return HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") # Load indexes @st.cache_resource def load_indexes(): # Load search index with open(SEARCH_INDEX_FILE, "r") as f: index = defaultdict(dict, json.load(f)) # Load vector store embeddings = load_embeddings() vector_store = FAISS.load_local(VECTOR_STORE_DIR, embeddings, allow_dangerous_deserialization=True) # Load BM25 index with open(BM25_INDEX_FILE, "rb") as f: bm25, bm25_texts, url_order = pickle.load(f) return index, vector_store, bm25, bm25_texts, url_order # Search functions def semantic_search(vector_store, query, k=5): results = vector_store.similarity_search(query, k=k) return [{ "url": r.metadata.get("url", "N/A"), "snippet": r.page_content[:200] } for r in results] def bm25_search(bm25, bm25_texts, url_order, index, query, k=5): query_tokens = query.lower().split() scores = bm25.get_scores(query_tokens) top_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:k] return [{ "url": url_order[i], "score": scores[i], "snippet": index[url_order[i]]["content"][:200] } for i in top_indices] # Streamlit UI def main(): st.set_page_config(page_title="LangChain Search Engine") st.title("LangChain Search Engine 🔍") st.markdown("Using Dense Search and Sparse Search. Indexed on April 02, 2025") st.markdown("for more details visit https://github.com/balnarendrasapa/search-engine") query = st.text_input("Enter your search query:", "") if query: index, vector_store, bm25, bm25_texts, url_order = load_indexes() with st.spinner("Searching..."): sem_results = semantic_search(vector_store, query) bm25_results = bm25_search(bm25, bm25_texts, url_order, index, query) st.subheader("🔎 Semantic Search Results") for i, res in enumerate(sem_results, 1): st.markdown(f"**{i}. [{res['url']}]({res['url']})**") st.write(res['snippet'] + "...") st.subheader("🧮 BM25 Sparse Search Results") for i, res in enumerate(bm25_results, 1): st.markdown(f"**{i}. [{res['url']}]({res['url']})** (Score: {res['score']:.2f})") st.write(res['snippet'] + "...") if __name__ == "__main__": main()