Spaces:
Paused
Paused
File size: 3,909 Bytes
1d01e07 6cac7b5 1d01e07 7a0fd29 31bf3ec 6cac7b5 1d01e07 31bf3ec 1d01e07 fe2f104 1d01e07 6cac7b5 4ba46c8 6cac7b5 1d01e07 7a0fd29 1d01e07 18bbde3 6cac7b5 2cece51 4ba46c8 1d01e07 6cac7b5 4ba46c8 6cac7b5 1d01e07 6cac7b5 2cece51 4ba46c8 1d01e07 f07518f 0b72dec 1d01e07 0343e87 2cece51 00e44cf 1d01e07 16f2afa 1d01e07 c724ff4 1d01e07 e88c3b9 1d01e07 16f2afa 1d01e07 13b7826 1d01e07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import gradio as gr
import PIL
import spaces
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from hi_diffusers import HiDreamImagePipeline, HiDreamImageTransformer2DModel
from hi_diffusers.schedulers.flash_flow_match import (
FlashFlowMatchEulerDiscreteScheduler,
)
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
)
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
# Constants
MODEL_PREFIX: str = "HiDream-ai"
LLAMA_MODEL_NAME: str = "meta-llama/Meta-Llama-3.1-8B-Instruct"
MODEL_PATH = "HiDream-ai/HiDream-I1-Fast"
MODEL_CONFIGS = {
"guidance_scale": 0.0,
"num_inference_steps": 16,
"shift": 3.0,
"scheduler": FlashFlowMatchEulerDiscreteScheduler,
}
# Supported image sizes
RESOLUTION_OPTIONS: list[str] = [
"1024 x 1024",
"768 x 1360",
"1360 x 768",
"880 x 1168",
"1168 x 880",
"1248 x 832",
"832 x 1248",
]
quant_config = TransformersBitsAndBytesConfig(
load_in_4bit=True,
)
tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL_NAME, use_fast=False)
text_encoder = AutoModelForCausalLM.from_pretrained(
LLAMA_MODEL_NAME,
output_hidden_states=True,
output_attentions=True,
low_cpu_mem_usage=True,
quantization_config=quant_config,
torch_dtype=torch.bfloat16,
)
quant_config = DiffusersBitsAndBytesConfig(
load_in_4bit=True,
)
transformer = HiDreamImageTransformer2DModel.from_pretrained(
MODEL_PATH,
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.bfloat16,
)
scheduler = MODEL_CONFIGS["scheduler"](
num_train_timesteps=1000,
shift=MODEL_CONFIGS["shift"],
use_dynamic_shifting=False,
)
pipe = HiDreamImagePipeline.from_pretrained(
MODEL_PATH,
transformer=transformer,
scheduler=scheduler,
tokenizer_4=tokenizer,
text_encoder_4=text_encoder,
device_map="balanced",
torch_dtype=torch.bfloat16,
)
@spaces.GPU(duration=120)
def generate_image(
prompt: str,
resolution: str,
seed: int,
progress=gr.Progress(track_tqdm=True), # noqa: ARG001, B008
) -> tuple[PIL.Image.Image, int]:
gr.Info(
"This Spaces is an unofficial quantized version of HiDream-ai-full. It is not as good as the full version, but it is faster and uses less memory."
)
if seed == -1:
seed = torch.randint(0, 1_000_000, (1,)).item()
height, width = tuple(map(int, resolution.replace(" ", "").split("x")))
generator = torch.Generator("cuda").manual_seed(seed)
image = pipe(
prompt=prompt,
height=height,
width=width,
guidance_scale=MODEL_CONFIGS["guidance_scale"],
num_inference_steps=MODEL_CONFIGS["num_inference_steps"],
generator=generator,
).images[0]
torch.cuda.empty_cache()
return image, seed
# Gradio UI
with gr.Blocks(title="HiDream Image Generator Fast") as demo:
gr.Markdown("## 🌈 HiDream Image Generator Fast")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
placeholder="e.g. A futuristic city with floating cars at sunset",
lines=3,
)
resolution = gr.Radio(
choices=RESOLUTION_OPTIONS,
value=RESOLUTION_OPTIONS[0],
label="Resolution",
)
seed = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
generate_btn = gr.Button("Generate Image", variant="primary")
seed_used = gr.Number(label="Seed Used", interactive=False)
with gr.Column():
output_image = gr.Image(label="Generated Image", type="pil")
generate_btn.click(
fn=generate_image,
inputs=[prompt, resolution, seed],
outputs=[output_image, seed_used],
)
if __name__ == "__main__":
demo.launch()
|