import tiktoken from typing import TYPE_CHECKING, Any, Dict, Generator, List, Literal, Union from itertools import chain from llmtuner.extras.constants import IGNORE_INDEX from llmtuner.extras.template import get_template_and_fix_tokenizer if TYPE_CHECKING: from datasets import Dataset, IterableDataset from transformers import Seq2SeqTrainingArguments from transformers.tokenization_utils import PreTrainedTokenizer from llmtuner.hparams import DataArguments def preprocess_dataset( dataset: Union["Dataset", "IterableDataset"], tokenizer: "PreTrainedTokenizer", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", stage: Literal["pt", "sft", "rm", "ppo"] ) -> Union["Dataset", "IterableDataset"]: column_names = list(next(iter(dataset)).keys()) template = get_template_and_fix_tokenizer(data_args.template, tokenizer) def construct_example(examples: Dict[str, List[Any]]) -> Generator[Any, None, None]: for i in range(len(examples["prompt"])): query, response = examples["prompt"][i], examples["response"][i] query = query + "\n" + examples["query"][i] if "query" in examples and examples["query"][i] else query history = examples["history"][i] if "history" in examples else None system = examples["system"][i] if "system" in examples else None yield query, response, history, system def preprocess_pretrain_dataset(examples: Dict[str, List[Any]]) -> Dict[str, Any]: # build grouped texts with format `X1 X2 X3 ...` if isinstance(getattr(tokenizer, "tokenizer", None), tiktoken.Encoding): kwargs = dict(allowed_special="all") # for tiktoken tokenizer (Qwen) else: kwargs = dict(add_special_tokens=True) if hasattr(tokenizer, "add_bos_token") and hasattr(tokenizer, "add_eos_token"): setattr(tokenizer, "add_bos_token", True) # for LLaMA tokenizer setattr(tokenizer, "add_eos_token", True) tokenized_examples = tokenizer(examples["prompt"], **kwargs) concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()} total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]]) block_size = data_args.cutoff_len # we drop the small remainder, and if the total_length < block_size, we exclude this batch total_length = (total_length // block_size) * block_size # split by chunks of cutoff_len result = { k: [t[i: i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } return result def preprocess_supervised_dataset(examples: Dict[str, List[Any]]) -> Dict[str, Any]: # build inputs with format ` X Y ` and labels with format ` ... Y ` # for multiturn examples, we only mask the prompt part in each prompt-response pair. model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} for query, response, history, system in construct_example(examples): input_ids, labels = [], [] for turn_idx, (source_ids, target_ids) in enumerate(template.encode_multiturn( tokenizer, query, response, history, system )): total_len = len(source_ids) + len(target_ids) max_source_len = int(data_args.cutoff_len * (len(source_ids) / total_len)) max_target_len = int(data_args.cutoff_len * (len(target_ids) / total_len)) if len(source_ids) > max_source_len: source_ids = source_ids[:max_source_len] if len(target_ids) > max_target_len: target_ids = target_ids[:max_target_len] if turn_idx != 0 and template.efficient_eos: source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1) else: source_mask = [IGNORE_INDEX] * len(source_ids) input_ids += source_ids + target_ids labels += source_mask + target_ids if template.efficient_eos: input_ids += [tokenizer.eos_token_id] labels += [tokenizer.eos_token_id] if len(input_ids) > data_args.cutoff_len: input_ids = input_ids[:data_args.cutoff_len] labels = labels[:data_args.cutoff_len] model_inputs["input_ids"].append(input_ids) model_inputs["attention_mask"].append([1] * len(input_ids)) model_inputs["labels"].append(labels) return model_inputs def preprocess_unsupervised_dataset(examples: Dict[str, List[Any]]) -> Dict[str, Any]: # build inputs with format ` X` and labels with format `Y ` model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} for query, response, history, system in construct_example(examples): input_ids, labels = template.encode_oneturn(tokenizer, query, response, history, system) if template.efficient_eos: labels += [tokenizer.eos_token_id] if len(input_ids) > data_args.cutoff_len: input_ids = input_ids[:data_args.cutoff_len] if len(labels) > data_args.cutoff_len: labels = labels[:data_args.cutoff_len] model_inputs["input_ids"].append(input_ids) model_inputs["attention_mask"].append([1] * len(input_ids)) model_inputs["labels"].append(labels) return model_inputs def preprocess_pairwise_dataset(examples): # build input pairs with format ` X`, `Y1 ` and `Y2 ` model_inputs = {"prompt_ids": [], "chosen_ids": [], "rejected_ids": []} for query, response, history, system in construct_example(examples): prompt_ids, chosen_ids = template.encode_oneturn(tokenizer, query, response[0], history, system) _, rejected_ids = template.encode_oneturn(tokenizer, query, response[1], history, system) if template.efficient_eos: chosen_ids += [tokenizer.eos_token_id] rejected_ids += [tokenizer.eos_token_id] total_len = len(prompt_ids) + max(len(chosen_ids), len(rejected_ids)) max_source_len = int(data_args.cutoff_len * (len(prompt_ids) / total_len)) max_target_len = int(data_args.cutoff_len * (max(len(chosen_ids), len(rejected_ids)) / total_len)) if len(prompt_ids) > max_source_len: prompt_ids = prompt_ids[:max_source_len] if len(chosen_ids) > max_target_len: chosen_ids = chosen_ids[:max_target_len] if len(rejected_ids) > max_target_len: rejected_ids = rejected_ids[:max_target_len] model_inputs["prompt_ids"].append(prompt_ids) model_inputs["chosen_ids"].append(chosen_ids) model_inputs["rejected_ids"].append(rejected_ids) return model_inputs def print_supervised_dataset_example(example): print("input_ids:\n{}".format(example["input_ids"])) print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False))) print("label_ids:\n{}".format(example["labels"])) print("labels:\n{}".format( tokenizer.decode(list(filter(lambda x: x != IGNORE_INDEX, example["labels"])), skip_special_tokens=False) )) def print_pairwise_dataset_example(example): print("prompt_ids:\n{}".format(example["prompt_ids"])) print("prompt:\n{}".format(tokenizer.decode(example["prompt_ids"], skip_special_tokens=False))) print("chosen_ids:\n{}".format(example["chosen_ids"])) print("chosen:\n{}".format(tokenizer.decode(example["chosen_ids"], skip_special_tokens=False))) print("rejected_ids:\n{}".format(example["rejected_ids"])) print("rejected:\n{}".format(tokenizer.decode(example["rejected_ids"], skip_special_tokens=False))) def print_unsupervised_dataset_example(example): print("input_ids:\n{}".format(example["input_ids"])) print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False))) if stage == "pt": dataset = dataset.filter(lambda example: example["prompt"]) preprocess_function = preprocess_pretrain_dataset print_function = print_unsupervised_dataset_example elif stage == "sft" and not training_args.predict_with_generate: dataset = dataset.filter(lambda example: example["prompt"] and example["response"]) preprocess_function = preprocess_supervised_dataset print_function = print_supervised_dataset_example elif stage == "rm": dataset = dataset.filter(lambda example: example["prompt"] and len(example["response"]) > 1) preprocess_function = preprocess_pairwise_dataset print_function = print_pairwise_dataset_example else: dataset = dataset.filter(lambda example: example["prompt"]) preprocess_function = preprocess_unsupervised_dataset print_function = print_unsupervised_dataset_example with training_args.main_process_first(desc="dataset map pre-processing"): kwargs = {} if not data_args.streaming: kwargs = dict( num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on dataset" ) dataset = dataset.map( preprocess_function, batched=True, remove_columns=column_names, **kwargs ) print_function(next(iter(dataset))) return dataset