# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
import os
import time
from datetime import datetime
import tempfile
import cv2
import matplotlib.pyplot as plt
import numpy as np
import gradio as gr
import torch
from moviepy.editor import ImageSequenceClip
from PIL import Image
from sam2.build_sam import build_sam2_video_predictor
# Remove CUDA environment variables
if 'TORCH_CUDNN_SDPA_ENABLED' in os.environ:
del os.environ["TORCH_CUDNN_SDPA_ENABLED"]
# Description
title = "
EdgeTAM CPU [GitHub] "
description_p = """# Instructions
- Upload one video or click one example video
- Click 'include' point type, select the object to segment and track
- Click 'exclude' point type (optional), select the area you want to avoid segmenting and tracking
- Click the 'Track' button to obtain the masked video
"""
# examples - keeping fewer examples to reduce memory footprint
examples = [
["examples/01_dog.mp4"],
["examples/02_cups.mp4"],
["examples/03_blocks.mp4"],
["examples/04_coffee.mp4"],
["examples/05_default_juggle.mp4"],
]
OBJ_ID = 0
# Initialize model on CPU - add error handling for file paths
sam2_checkpoint = "checkpoints/edgetam.pt"
model_cfg = "edgetam.yaml"
# Check if model files exist
def check_file_exists(filepath):
exists = os.path.exists(filepath)
if not exists:
print(f"WARNING: File not found: {filepath}")
return exists
# Verify files exist
model_files_exist = check_file_exists(sam2_checkpoint) and check_file_exists(model_cfg)
predictor = None
try:
# Load model with careful error handling
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
print("predictor loaded on CPU")
except Exception as e:
print(f"Error loading model: {e}")
import traceback
traceback.print_exc()
# Function to get video frame rate
def get_video_fps(video_path):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Could not open video.")
return 30.0 # Default fallback value
fps = cap.get(cv2.CAP_PROP_FPS)
cap.release()
return fps
def reset(session_state):
"""Reset all session state variables and UI elements."""
session_state["input_points"] = []
session_state["input_labels"] = []
if session_state["inference_state"] is not None:
predictor.reset_state(session_state["inference_state"])
session_state["first_frame"] = None
session_state["all_frames"] = None
session_state["inference_state"] = None
session_state["progress"] = 0
return (
None,
gr.update(open=True),
None,
None,
gr.update(value=None, visible=False),
gr.update(value=0, visible=False),
session_state,
)
def clear_points(session_state):
"""Clear tracking points while keeping the video frames."""
session_state["input_points"] = []
session_state["input_labels"] = []
if session_state["inference_state"] is not None and session_state["inference_state"].get("tracking_has_started", False):
predictor.reset_state(session_state["inference_state"])
return (
session_state["first_frame"],
None,
gr.update(value=None, visible=False),
gr.update(value=0, visible=False),
session_state,
)
def preprocess_video_in(video_path, session_state):
"""Process input video to extract frames for tracking."""
if video_path is None or not os.path.exists(video_path):
return (
gr.update(open=True), # video_in_drawer
None, # points_map
None, # output_image
gr.update(value=None, visible=False), # output_video
gr.update(value=0, visible=False), # progress_bar
session_state,
)
# Read the video
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(f"Error: Could not open video at {video_path}.")
return (
gr.update(open=True), # video_in_drawer
None, # points_map
None, # output_image
gr.update(value=None, visible=False), # output_video
gr.update(value=0, visible=False), # progress_bar
session_state,
)
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
print(f"Video info: {frame_width}x{frame_height}, {total_frames} frames, {fps} FPS")
target_width = 640 # Target width for processing on CPU
scale_factor = 1.0
if frame_width > target_width:
scale_factor = target_width / frame_width
new_width = int(frame_width * scale_factor)
new_height = int(frame_height * scale_factor)
print(f"Resizing video for CPU processing: {frame_width}x{frame_height} -> {new_width}x{new_height}")
# Even more aggressive frame skipping for very long videos on CPU
frame_stride = 1
max_frames = 150 # Maximum number of frames to process
if total_frames > max_frames:
frame_stride = max(1, int(total_frames / max_frames))
print(f"Video has {total_frames} frames, using stride of {frame_stride} to limit to {max_frames}")
frame_number = 0
first_frame = None
all_frames = []
while True:
ret, frame = cap.read()
if not ret:
break
if frame_number % frame_stride == 0:
try:
# Resize the frame if needed
if scale_factor != 1.0:
frame = cv2.resize(
frame,
(int(frame_width * scale_factor), int(frame_height * scale_factor)),
interpolation=cv2.INTER_AREA
)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = np.array(frame)
if first_frame is None:
first_frame = frame
all_frames.append(frame)
except Exception as e:
print(f"Error processing frame {frame_number}: {e}")
frame_number += 1
cap.release()
if first_frame is None or len(all_frames) == 0:
print("Error: No frames could be extracted from the video.")
return (
gr.update(open=True), # video_in_drawer
None, # points_map
None, # output_image
gr.update(value=None, visible=False), # output_video
gr.update(value=0, visible=False), # progress_bar
session_state,
)
print(f"Successfully extracted {len(all_frames)} frames from video")
session_state["first_frame"] = copy.deepcopy(first_frame)
session_state["all_frames"] = all_frames
session_state["frame_stride"] = frame_stride
session_state["scale_factor"] = scale_factor
session_state["original_dimensions"] = (frame_width, frame_height)
session_state["progress"] = 0
try:
session_state["inference_state"] = predictor.init_state(video_path=video_path)
session_state["input_points"] = []
session_state["input_labels"] = []
except Exception as e:
print(f"Error initializing inference state: {e}")
import traceback
traceback.print_exc()
session_state["inference_state"] = None
return [
gr.update(open=False), # video_in_drawer
first_frame, # points_map
None, # output_image
gr.update(value=None, visible=False), # output_video
gr.update(value=0, visible=False), # progress_bar
session_state,
]
def segment_with_points(
point_type,
session_state,
evt: gr.SelectData,
):
"""Add and process tracking points on the first frame."""
if session_state["first_frame"] is None:
print("Error: No frame available for segmentation")
return None, None, session_state
session_state["input_points"].append(evt.index)
print(f"TRACKING INPUT POINT: {session_state['input_points']}")
if point_type == "include":
session_state["input_labels"].append(1)
elif point_type == "exclude":
session_state["input_labels"].append(0)
print(f"TRACKING INPUT LABEL: {session_state['input_labels']}")
# Open the image and get its dimensions
first_frame = session_state["first_frame"]
h, w = first_frame.shape[:2]
from PIL import Image
transparent_background = Image.fromarray(first_frame).convert("RGBA")
# Define the circle radius as a fraction of the smaller dimension
fraction = 0.01 # You can adjust this value as needed
radius = int(fraction * min(w, h))
if radius < 3:
radius = 3 # Ensure minimum visibility
# Create a transparent layer to draw on
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
for index, track in enumerate(session_state["input_points"]):
if session_state["input_labels"][index] == 1:
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1) # Green for include
else:
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1) # Red for exclude
# Convert the transparent layer back to an image
transparent_layer = Image.fromarray(transparent_layer, "RGBA")
selected_point_map = Image.alpha_composite(
transparent_background, transparent_layer
)
# Use the clicked points and labels
points = np.array(session_state["input_points"], dtype=np.float32)
labels = np.array(session_state["input_labels"], np.int32)
try:
if predictor is None:
raise ValueError("Model predictor is not initialized")
if session_state["inference_state"] is None:
raise ValueError("Inference state is not initialized")
# For CPU optimization, we'll process with smaller batch size
_, _, out_mask_logits = predictor.add_new_points(
inference_state=session_state["inference_state"],
frame_idx=0,
obj_id=OBJ_ID,
points=points,
labels=labels,
)
# Create the mask and check dimensions first
out_mask = (out_mask_logits[0] > 0.0).cpu().numpy()
# Convert to RGB for visualization
# Create an overlay with semi-transparent color
overlay = np.zeros((h, w, 3), dtype=np.uint8)
# Create a colored mask - blue with opacity
overlay_mask = np.zeros_like(overlay)
# Resize mask carefully if needed - handle empty dimensions
if out_mask.shape[0] > 0 and out_mask.shape[1] > 0:
# Check if dimensions differ
if out_mask.shape[:2] != (h, w):
print(f"Resizing mask from {out_mask.shape[:2]} to {h}x{w}")
# Use numpy/PIL for resizing to avoid OpenCV issues
from PIL import Image
# Ensure mask is boolean type
if out_mask.dtype != np.bool_:
out_mask = out_mask > 0
mask_img = Image.fromarray(out_mask.astype(np.uint8) * 255)
mask_img = mask_img.resize((w, h), Image.NEAREST)
out_mask = np.array(mask_img) > 0
# Apply mask color
overlay_mask[out_mask] = [0, 120, 255] # Blue color for mask
# Blend original frame with mask
alpha = 0.5 # Opacity
frame_with_mask = cv2.addWeighted(
first_frame, 1, overlay_mask, alpha, 0
)
# Add points on top of mask
points_overlay = np.zeros((h, w, 4), dtype=np.uint8)
for index, track in enumerate(session_state["input_points"]):
if session_state["input_labels"][index] == 1:
cv2.circle(points_overlay, track, radius, (0, 255, 0, 255), -1) # Green
else:
cv2.circle(points_overlay, track, radius, (255, 0, 0, 255), -1) # Red
# Convert to PIL for overlay
frame_with_mask_pil = Image.fromarray(frame_with_mask)
points_overlay_pil = Image.fromarray(points_overlay, "RGBA")
# Final composite
first_frame_output = Image.alpha_composite(
frame_with_mask_pil.convert("RGBA"), points_overlay_pil
)
except Exception as e:
print(f"Error in segmentation: {e}")
import traceback
traceback.print_exc()
# Return just the points as fallback
first_frame_output = selected_point_map
return selected_point_map, np.array(first_frame_output), session_state
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
"""Convert binary mask to RGBA image for visualization."""
# Check if mask is valid
if mask is None or mask.size == 0:
print("Warning: Empty mask provided to show_mask")
# Return an empty transparent mask
if convert_to_image:
return Image.new('RGBA', (100, 100), (0, 0, 0, 0))
else:
return np.zeros((100, 100, 4), dtype=np.uint8)
# Get mask dimensions
if len(mask.shape) == 2:
h, w = mask.shape
else:
h, w = mask.shape[-2:]
if h == 0 or w == 0:
print(f"Warning: Invalid mask dimensions: {h}x{w}")
# Return an empty transparent mask
if convert_to_image:
return Image.new('RGBA', (100, 100), (0, 0, 0, 0))
else:
return np.zeros((100, 100, 4), dtype=np.uint8)
# Set the color for visualization
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
cmap = plt.get_cmap("tab10")
cmap_idx = 0 if obj_id is None else obj_id
color = np.array([*cmap(cmap_idx)[:3], 0.6])
try:
# Create a colored visualization of the mask
colored_mask = np.zeros((h, w, 4), dtype=np.uint8)
# Apply color to mask areas (where mask is True)
for i in range(3): # RGB channels
colored_mask[:, :, i] = (mask * color[i] * 255).astype(np.uint8)
# Set alpha channel
colored_mask[:, :, 3] = (mask * color[3] * 255).astype(np.uint8)
if convert_to_image:
return Image.fromarray(colored_mask, "RGBA")
else:
return colored_mask
except Exception as e:
print(f"Error in show_mask: {e}")
import traceback
traceback.print_exc()
# Return a fallback transparent image
if convert_to_image:
return Image.new('RGBA', (h, w), (0, 0, 0, 0))
else:
return np.zeros((h, w, 4), dtype=np.uint8)
def update_progress(progress_percent, progress_bar):
"""Update progress bar during processing."""
return gr.update(value=progress_percent, visible=True)
def propagate_to_all(
video_in,
session_state,
progress=gr.Progress(),
):
"""Process video frames and generate masked video output with progress tracking."""
if (
len(session_state["input_points"]) == 0
or video_in is None
or session_state["inference_state"] is None
or predictor is None
):
print("Missing required data for tracking")
return (
gr.update(value=None, visible=False),
gr.update(value=0, visible=False),
session_state,
)
# For CPU optimization: process in smaller batches
chunk_size = 3 # Process 3 frames at a time to avoid memory issues on CPU
try:
# run propagation throughout the video and collect the results in a dict
video_segments = {} # video_segments contains the per-frame segmentation results
print("Starting propagate_in_video on CPU")
# Get the count for progress reporting (estimate)
all_frames_count = 100 # Reasonable estimate
# Now do the actual processing with progress updates
current_frame = 0
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
session_state["inference_state"]
):
try:
# Store the masks for each object ID
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
# Update progress
current_frame += 1
progress_percent = min(50, int((current_frame / all_frames_count) * 50))
session_state["progress"] = progress_percent
progress(progress_percent/100, desc="Processing frames")
if out_frame_idx % 10 == 0:
print(f"Processed frame {out_frame_idx} ({progress_percent}%)")
# Release memory periodically
if out_frame_idx % chunk_size == 0:
# Explicitly clear any tensors
del out_mask_logits
import gc
gc.collect()
except Exception as e:
print(f"Error processing frame {out_frame_idx}: {e}")
import traceback
traceback.print_exc()
continue
# For CPU optimization: increase stride to reduce processing
# Create a more aggressive stride to limit to fewer frames in output
total_frames = len(video_segments)
print(f"Total frames processed: {total_frames}")
# Update progress to show rendering phase
session_state["progress"] = 50
progress(0.5, desc="Rendering video")
# Limit to max 50 frames for CPU processing
max_output_frames = 30
vis_frame_stride = max(1, total_frames // max_output_frames)
print(f"Using stride of {vis_frame_stride} for output video generation")
# Get dimensions of the frames
if len(session_state["all_frames"]) == 0:
raise ValueError("No frames available in session state")
first_frame = session_state["all_frames"][0]
h, w = first_frame.shape[:2]
# Create output frames
output_frames = []
frame_indices = list(range(0, total_frames, vis_frame_stride))
total_output_frames = len(frame_indices)
for i, out_frame_idx in enumerate(frame_indices):
if out_frame_idx not in video_segments or OBJ_ID not in video_segments[out_frame_idx]:
continue
try:
# Get corresponding frame from all_frames
if out_frame_idx >= len(session_state["all_frames"]):
print(f"Warning: Frame index {out_frame_idx} exceeds available frames {len(session_state['all_frames'])}")
frame_idx = min(out_frame_idx, len(session_state["all_frames"])-1)
else:
frame_idx = out_frame_idx
frame = session_state["all_frames"][frame_idx]
# Create a colored overlay rather than using transparency
# Get the mask
out_mask = video_segments[out_frame_idx][OBJ_ID]
# Ensure the mask is not empty and has valid dimensions
if out_mask.size == 0 or 0 in out_mask.shape:
print(f"Warning: Invalid mask for frame {out_frame_idx}")
# Skip this frame
continue
# Get dimensions
frame_h, frame_w = frame.shape[:2]
mask_h, mask_w = out_mask.shape[:2]
# Resize mask using PIL if dimensions don't match (avoid OpenCV)
if mask_h != frame_h or mask_w != frame_w:
print(f"Resizing mask from {mask_h}x{mask_w} to {frame_h}x{frame_w}")
try:
# Ensure mask is boolean type
if out_mask.dtype != np.bool_:
out_mask = out_mask > 0
mask_img = Image.fromarray(out_mask.astype(np.uint8) * 255)
mask_img = mask_img.resize((frame_w, frame_h), Image.NEAREST)
out_mask = np.array(mask_img) > 0
except Exception as e:
print(f"Error resizing mask: {e}")
# Skip this frame if resize fails
continue
# Create an overlay with semi-transparent color
overlay = np.zeros_like(frame)
# Set blue color for mask area
overlay[out_mask] = [0, 120, 255] # BGR format for OpenCV
# Blend with original frame
alpha = 0.5
output_frame = cv2.addWeighted(frame, 1, overlay, alpha, 0)
# Add to output frames
output_frames.append(output_frame)
# Update progress
progress_percent = 50 + min(50, int((i / total_output_frames) * 50))
session_state["progress"] = progress_percent
progress(progress_percent/100, desc=f"Rendering video frames ({i}/{total_output_frames})")
# Clear memory periodically
if len(output_frames) % 10 == 0:
import gc
gc.collect()
except Exception as e:
print(f"Error creating output frame {out_frame_idx}: {e}")
import traceback
traceback.print_exc()
progress.tqdm.update(1)
continue
# Create a video clip from the image sequence
original_fps = get_video_fps(video_in)
fps = original_fps
# For CPU optimization - lower FPS if original is high
if fps > 15:
fps = 15 # Lower fps for CPU processing
print(f"Creating video with {len(output_frames)} frames at {fps} FPS")
# Update progress to show video creation phase
session_state["progress"] = 90
# Check if we have any frames to work with
if len(output_frames) == 0:
raise ValueError("No output frames were generated")
# Ensure all frames have the same shape
first_shape = output_frames[0].shape
valid_frames = []
for i, frame in enumerate(output_frames):
if frame.shape == first_shape:
valid_frames.append(frame)
else:
print(f"Skipping frame {i} with inconsistent shape: {frame.shape} vs {first_shape}")
if len(valid_frames) == 0:
raise ValueError("No valid frames with consistent shape")
clip = ImageSequenceClip(valid_frames, fps=fps)
# Write the result to a file - use lower quality for CPU
unique_id = datetime.now().strftime("%Y%m%d%H%M%S")
final_vid_output_path = f"output_video_{unique_id}.mp4"
final_vid_output_path = os.path.join(tempfile.gettempdir(), final_vid_output_path)
# Lower bitrate for CPU processing
clip.write_videofile(
final_vid_output_path,
codec="libx264",
bitrate="800k",
threads=2, # Use fewer threads for CPU
logger=None # Disable logger to reduce console output
)
# Complete progress
session_state["progress"] = 100
# Free memory
del video_segments
del output_frames
import gc
gc.collect()
return (
gr.update(value=final_vid_output_path, visible=True),
gr.update(value=100, visible=False),
session_state,
)
except Exception as e:
print(f"Error in propagate_to_all: {e}")
import traceback
traceback.print_exc()
return (
gr.update(value=None, visible=False),
gr.update(value=0, visible=False),
session_state,
)
def update_ui():
"""Show progress bar when starting processing."""
return gr.update(visible=True), gr.update(visible=True, value=0)
# Main Gradio UI setup
with gr.Blocks() as demo:
session_state = gr.State(
{
"first_frame": None,
"all_frames": None,
"input_points": [],
"input_labels": [],
"inference_state": None,
"frame_stride": 1,
"scale_factor": 1.0,
"original_dimensions": None,
"progress": 0,
}
)
with gr.Column():
# Title
gr.Markdown(title)
with gr.Row():
with gr.Column():
# Instructions
gr.Markdown(description_p)
with gr.Accordion("Input Video", open=True) as video_in_drawer:
video_in = gr.Video(label="Input Video", format="mp4")
with gr.Row():
point_type = gr.Radio(
label="point type",
choices=["include", "exclude"],
value="include",
scale=2,
)
propagate_btn = gr.Button("Track", scale=1, variant="primary")
clear_points_btn = gr.Button("Clear Points", scale=1)
reset_btn = gr.Button("Reset", scale=1)
points_map = gr.Image(
label="Frame with Point Prompt", type="numpy", interactive=False
)
# Add progress bar
progress_bar = gr.Slider(
minimum=0,
maximum=100,
value=0,
step=1,
label="Processing Progress",
visible=False,
interactive=False
)
with gr.Column():
gr.Markdown("# Try some of the examples below ⬇️")
gr.Examples(
examples=examples,
inputs=[
video_in,
],
examples_per_page=5,
)
output_image = gr.Image(label="Reference Mask")
output_video = gr.Video(visible=False)
# When new video is uploaded
video_in.upload(
fn=preprocess_video_in,
inputs=[
video_in,
session_state,
],
outputs=[
video_in_drawer, # Accordion to hide uploaded video player
points_map, # Image component where we add new tracking points
output_image,
output_video,
progress_bar,
session_state,
],
queue=False,
)
video_in.change(
fn=preprocess_video_in,
inputs=[
video_in,
session_state,
],
outputs=[
video_in_drawer, # Accordion to hide uploaded video player
points_map, # Image component where we add new tracking points
output_image,
output_video,
progress_bar,
session_state,
],
queue=False,
)
# triggered when we click