Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@
|
|
6 |
|
7 |
import copy
|
8 |
import os
|
|
|
9 |
from datetime import datetime
|
10 |
import tempfile
|
11 |
|
@@ -14,6 +15,7 @@ import matplotlib.pyplot as plt
|
|
14 |
import numpy as np
|
15 |
import gradio as gr
|
16 |
import torch
|
|
|
17 |
from moviepy.editor import ImageSequenceClip
|
18 |
from PIL import Image
|
19 |
from sam2.build_sam import build_sam2_video_predictor
|
@@ -22,19 +24,19 @@ from sam2.build_sam import build_sam2_video_predictor
|
|
22 |
if 'TORCH_CUDNN_SDPA_ENABLED' in os.environ:
|
23 |
del os.environ["TORCH_CUDNN_SDPA_ENABLED"]
|
24 |
|
25 |
-
#
|
26 |
-
title = "<center><strong><font size='8'>EdgeTAM CPU
|
27 |
|
28 |
description_p = """# Instructions
|
29 |
<ol>
|
30 |
-
<li>Upload one video or click one example video</li>
|
31 |
-
<li>Click 'include' point type, select the object to segment and track</li>
|
32 |
-
<li>Click 'exclude' point type (optional), select the area to avoid segmenting</li>
|
33 |
-
<li>Click the 'Track' button to obtain the masked video</li>
|
34 |
</ol>
|
35 |
"""
|
36 |
|
37 |
-
#
|
38 |
examples = [
|
39 |
["examples/01_dog.mp4"],
|
40 |
["examples/02_cups.mp4"],
|
@@ -45,38 +47,41 @@ examples = [
|
|
45 |
|
46 |
OBJ_ID = 0
|
47 |
|
48 |
-
# Initialize model on CPU
|
49 |
sam2_checkpoint = "checkpoints/edgetam.pt"
|
50 |
model_cfg = "edgetam.yaml"
|
51 |
|
|
|
52 |
def check_file_exists(filepath):
|
53 |
exists = os.path.exists(filepath)
|
54 |
if not exists:
|
55 |
print(f"WARNING: File not found: {filepath}")
|
56 |
return exists
|
57 |
|
58 |
-
# Verify
|
59 |
model_files_exist = check_file_exists(sam2_checkpoint) and check_file_exists(model_cfg)
|
|
|
60 |
try:
|
|
|
61 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
62 |
-
print("
|
63 |
except Exception as e:
|
64 |
print(f"Error loading model: {e}")
|
65 |
import traceback
|
66 |
traceback.print_exc()
|
67 |
-
predictor = None
|
68 |
|
69 |
-
#
|
70 |
def get_video_fps(video_path):
|
71 |
cap = cv2.VideoCapture(video_path)
|
72 |
if not cap.isOpened():
|
73 |
print("Error: Could not open video.")
|
74 |
-
return 30.0
|
75 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
76 |
cap.release()
|
77 |
return fps
|
78 |
|
79 |
def reset(session_state):
|
|
|
80 |
session_state["input_points"] = []
|
81 |
session_state["input_labels"] = []
|
82 |
if session_state["inference_state"] is not None:
|
@@ -84,16 +89,19 @@ def reset(session_state):
|
|
84 |
session_state["first_frame"] = None
|
85 |
session_state["all_frames"] = None
|
86 |
session_state["inference_state"] = None
|
|
|
87 |
return (
|
88 |
None,
|
89 |
gr.update(open=True),
|
90 |
None,
|
91 |
None,
|
92 |
gr.update(value=None, visible=False),
|
|
|
93 |
session_state,
|
94 |
)
|
95 |
|
96 |
def clear_points(session_state):
|
|
|
97 |
session_state["input_points"] = []
|
98 |
session_state["input_labels"] = []
|
99 |
if session_state["inference_state"] is not None and session_state["inference_state"].get("tracking_has_started", False):
|
@@ -102,82 +110,143 @@ def clear_points(session_state):
|
|
102 |
session_state["first_frame"],
|
103 |
None,
|
104 |
gr.update(value=None, visible=False),
|
|
|
105 |
session_state,
|
106 |
)
|
107 |
|
108 |
def preprocess_video_in(video_path, session_state):
|
109 |
-
|
|
|
110 |
return (
|
111 |
-
gr.update(open=True),
|
112 |
-
None,
|
113 |
-
None,
|
114 |
-
gr.update(value=None, visible=False),
|
|
|
115 |
session_state,
|
116 |
)
|
117 |
|
|
|
118 |
cap = cv2.VideoCapture(video_path)
|
119 |
if not cap.isOpened():
|
120 |
-
print("Error: Could not open video.")
|
121 |
return (
|
122 |
-
gr.update(open=True),
|
123 |
-
None,
|
124 |
-
None,
|
125 |
-
gr.update(value=None, visible=False),
|
|
|
126 |
session_state,
|
127 |
)
|
128 |
|
129 |
-
#
|
130 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
131 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
132 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
136 |
scale_factor = 1.0
|
|
|
137 |
if frame_width > target_width:
|
138 |
scale_factor = target_width / frame_width
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
143 |
frame_number = 0
|
144 |
first_frame = None
|
145 |
all_frames = []
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
148 |
while True:
|
149 |
ret, frame = cap.read()
|
150 |
if not ret:
|
151 |
break
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
frame_number += 1
|
160 |
|
161 |
cap.release()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
session_state["first_frame"] = copy.deepcopy(first_frame)
|
163 |
session_state["all_frames"] = all_frames
|
164 |
session_state["frame_stride"] = frame_stride
|
165 |
session_state["scale_factor"] = scale_factor
|
166 |
-
session_state["original_dimensions"] = (
|
167 |
-
|
168 |
-
session_state["inference_state"] = predictor.init_state(video_path=video_path)
|
169 |
-
session_state["input_points"] = []
|
170 |
-
session_state["input_labels"] = []
|
171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
return [
|
173 |
-
gr.update(open=False),
|
174 |
-
first_frame,
|
175 |
-
None,
|
176 |
-
gr.update(value=None, visible=False),
|
|
|
177 |
session_state,
|
178 |
]
|
179 |
|
180 |
-
def segment_with_points(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
session_state["input_points"].append(evt.index)
|
182 |
print(f"TRACKING INPUT POINT: {session_state['input_points']}")
|
183 |
|
@@ -187,26 +256,43 @@ def segment_with_points(point_type, session_state, evt: gr.SelectData):
|
|
187 |
session_state["input_labels"].append(0)
|
188 |
print(f"TRACKING INPUT LABEL: {session_state['input_labels']}")
|
189 |
|
|
|
190 |
first_frame = session_state["first_frame"]
|
191 |
h, w = first_frame.shape[:2]
|
192 |
transparent_background = Image.fromarray(first_frame).convert("RGBA")
|
193 |
|
194 |
-
#
|
195 |
-
fraction = 0.01
|
196 |
radius = int(fraction * min(w, h))
|
|
|
|
|
197 |
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
|
198 |
|
199 |
for index, track in enumerate(session_state["input_points"]):
|
200 |
-
|
201 |
-
|
|
|
|
|
202 |
|
|
|
203 |
transparent_layer = Image.fromarray(transparent_layer, "RGBA")
|
204 |
-
selected_point_map = Image.alpha_composite(
|
|
|
|
|
205 |
|
|
|
206 |
points = np.array(session_state["input_points"], dtype=np.float32)
|
|
|
207 |
labels = np.array(session_state["input_labels"], np.int32)
|
208 |
-
|
209 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
_, _, out_mask_logits = predictor.add_new_points(
|
211 |
inference_state=session_state["inference_state"],
|
212 |
frame_idx=0,
|
@@ -214,215 +300,475 @@ def segment_with_points(point_type, session_state, evt: gr.SelectData):
|
|
214 |
points=points,
|
215 |
labels=labels,
|
216 |
)
|
|
|
|
|
217 |
mask_array = (out_mask_logits[0] > 0.0).cpu().numpy()
|
218 |
|
219 |
-
# Ensure mask
|
220 |
if mask_array.shape[:2] != (h, w):
|
221 |
-
mask_array = cv2.resize(
|
|
|
|
|
|
|
|
|
222 |
|
223 |
mask_image = show_mask(mask_array)
|
|
|
|
|
224 |
if mask_image.size != transparent_background.size:
|
225 |
mask_image = mask_image.resize(transparent_background.size, Image.NEAREST)
|
226 |
-
|
227 |
first_frame_output = Image.alpha_composite(transparent_background, mask_image)
|
228 |
except Exception as e:
|
229 |
print(f"Error in segmentation: {e}")
|
|
|
|
|
|
|
230 |
first_frame_output = selected_point_map
|
231 |
|
232 |
return selected_point_map, first_frame_output, session_state
|
233 |
|
234 |
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
|
|
235 |
if random_color:
|
236 |
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
237 |
else:
|
238 |
cmap = plt.get_cmap("tab10")
|
239 |
cmap_idx = 0 if obj_id is None else obj_id
|
240 |
color = np.array([*cmap(cmap_idx)[:3], 0.6])
|
241 |
-
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
mask_reshaped = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
244 |
mask_rgba = (mask_reshaped * 255).astype(np.uint8)
|
245 |
-
|
246 |
if convert_to_image:
|
247 |
try:
|
|
|
248 |
if mask_rgba.shape[2] != 4:
|
|
|
249 |
proper_mask = np.zeros((h, w, 4), dtype=np.uint8)
|
|
|
250 |
proper_mask[:, :, :min(mask_rgba.shape[2], 4)] = mask_rgba[:, :, :min(mask_rgba.shape[2], 4)]
|
251 |
mask_rgba = proper_mask
|
|
|
|
|
252 |
return Image.fromarray(mask_rgba, "RGBA")
|
253 |
except Exception as e:
|
254 |
print(f"Error converting mask to image: {e}")
|
255 |
-
|
|
|
|
|
256 |
|
257 |
return mask_rgba
|
258 |
|
259 |
-
def
|
260 |
-
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
-
|
|
|
|
|
264 |
try:
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
try:
|
|
|
271 |
video_segments[out_frame_idx] = {
|
272 |
-
out_obj_id: (
|
273 |
for i, out_obj_id in enumerate(out_obj_ids)
|
274 |
}
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
if out_frame_idx % chunk_size == 0:
|
277 |
-
|
|
|
278 |
import gc
|
279 |
gc.collect()
|
280 |
except Exception as e:
|
281 |
print(f"Error processing frame {out_frame_idx}: {e}")
|
|
|
|
|
282 |
continue
|
283 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
max_output_frames = 50
|
285 |
vis_frame_stride = max(1, total_frames // max_output_frames)
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
first_frame = session_state["all_frames"][0]
|
287 |
h, w = first_frame.shape[:2]
|
|
|
|
|
288 |
output_frames = []
|
289 |
-
|
|
|
|
|
290 |
for out_frame_idx in range(0, total_frames, vis_frame_stride):
|
291 |
if out_frame_idx not in video_segments or OBJ_ID not in video_segments[out_frame_idx]:
|
|
|
292 |
continue
|
|
|
293 |
try:
|
294 |
-
frame
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
transparent_background = Image.fromarray(frame).convert("RGBA")
|
|
|
|
|
296 |
out_mask = video_segments[out_frame_idx][OBJ_ID]
|
297 |
-
|
298 |
-
#
|
299 |
-
if out_mask.
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
mask_image = show_mask(out_mask)
|
|
|
|
|
306 |
if mask_image.size != transparent_background.size:
|
307 |
mask_image = mask_image.resize(transparent_background.size, Image.NEAREST)
|
308 |
-
|
309 |
output_frame = Image.alpha_composite(transparent_background, mask_image)
|
310 |
-
|
311 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
if len(output_frames) % 10 == 0:
|
313 |
import gc
|
314 |
gc.collect()
|
|
|
315 |
except Exception as e:
|
316 |
-
print(f"Error creating output frame {out_frame_idx}: {
|
|
|
317 |
traceback.print_exc()
|
|
|
318 |
continue
|
319 |
|
|
|
320 |
original_fps = get_video_fps(video_in)
|
321 |
-
fps =
|
322 |
-
|
323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
unique_id = datetime.now().strftime("%Y%m%d%H%M%S")
|
325 |
-
final_vid_output_path =
|
|
|
326 |
|
|
|
327 |
clip.write_videofile(
|
328 |
-
final_vid_output_path,
|
329 |
-
codec="libx264",
|
330 |
bitrate="800k",
|
331 |
-
threads=2,
|
332 |
-
logger=None
|
333 |
)
|
334 |
-
|
335 |
-
|
|
|
|
|
|
|
|
|
|
|
336 |
import gc
|
337 |
gc.collect()
|
338 |
|
339 |
-
return
|
340 |
-
|
|
|
|
|
|
|
|
|
341 |
except Exception as e:
|
342 |
print(f"Error in propagate_to_all: {e}")
|
343 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
|
345 |
def update_ui():
|
346 |
-
|
|
|
|
|
347 |
|
348 |
-
# Gradio
|
349 |
with gr.Blocks() as demo:
|
350 |
-
session_state = gr.State(
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
|
|
|
|
|
|
360 |
|
361 |
with gr.Column():
|
|
|
362 |
gr.Markdown(title)
|
363 |
with gr.Row():
|
|
|
364 |
with gr.Column():
|
|
|
365 |
gr.Markdown(description_p)
|
|
|
366 |
with gr.Accordion("Input Video", open=True) as video_in_drawer:
|
367 |
video_in = gr.Video(label="Input Video", format="mp4")
|
|
|
368 |
with gr.Row():
|
369 |
-
point_type = gr.Radio(
|
|
|
|
|
|
|
|
|
|
|
370 |
propagate_btn = gr.Button("Track", scale=1, variant="primary")
|
371 |
clear_points_btn = gr.Button("Clear Points", scale=1)
|
372 |
reset_btn = gr.Button("Reset", scale=1)
|
373 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
with gr.Column():
|
375 |
gr.Markdown("# Try some of the examples below ⬇️")
|
376 |
-
gr.Examples(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
output_image = gr.Image(label="Reference Mask")
|
378 |
output_video = gr.Video(visible=False)
|
379 |
|
|
|
380 |
video_in.upload(
|
381 |
fn=preprocess_video_in,
|
382 |
-
inputs=[
|
383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
queue=False,
|
385 |
)
|
386 |
|
387 |
video_in.change(
|
388 |
fn=preprocess_video_in,
|
389 |
-
inputs=[
|
390 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
queue=False,
|
392 |
)
|
393 |
|
|
|
394 |
points_map.select(
|
395 |
fn=segment_with_points,
|
396 |
-
inputs=[
|
397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
queue=False,
|
399 |
)
|
400 |
|
|
|
401 |
clear_points_btn.click(
|
402 |
fn=clear_points,
|
403 |
inputs=session_state,
|
404 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
queue=False,
|
406 |
)
|
407 |
|
408 |
reset_btn.click(
|
409 |
fn=reset,
|
410 |
inputs=session_state,
|
411 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
412 |
queue=False,
|
413 |
)
|
414 |
|
415 |
propagate_btn.click(
|
416 |
fn=update_ui,
|
417 |
inputs=[],
|
418 |
-
outputs=output_video,
|
419 |
queue=False,
|
420 |
).then(
|
421 |
fn=propagate_to_all,
|
422 |
-
inputs=[
|
423 |
-
|
424 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
425 |
)
|
426 |
|
|
|
427 |
demo.queue()
|
428 |
demo.launch()
|
|
|
6 |
|
7 |
import copy
|
8 |
import os
|
9 |
+
import time
|
10 |
from datetime import datetime
|
11 |
import tempfile
|
12 |
|
|
|
15 |
import numpy as np
|
16 |
import gradio as gr
|
17 |
import torch
|
18 |
+
|
19 |
from moviepy.editor import ImageSequenceClip
|
20 |
from PIL import Image
|
21 |
from sam2.build_sam import build_sam2_video_predictor
|
|
|
24 |
if 'TORCH_CUDNN_SDPA_ENABLED' in os.environ:
|
25 |
del os.environ["TORCH_CUDNN_SDPA_ENABLED"]
|
26 |
|
27 |
+
# Description
|
28 |
+
title = "<center><strong><font size='8'>EdgeTAM CPU<font></strong> <a href='https://github.com/facebookresearch/EdgeTAM'><font size='6'>[GitHub]</font></a> </center>"
|
29 |
|
30 |
description_p = """# Instructions
|
31 |
<ol>
|
32 |
+
<li> Upload one video or click one example video</li>
|
33 |
+
<li> Click 'include' point type, select the object to segment and track</li>
|
34 |
+
<li> Click 'exclude' point type (optional), select the area you want to avoid segmenting and tracking</li>
|
35 |
+
<li> Click the 'Track' button to obtain the masked video </li>
|
36 |
</ol>
|
37 |
"""
|
38 |
|
39 |
+
# examples - keeping fewer examples to reduce memory footprint
|
40 |
examples = [
|
41 |
["examples/01_dog.mp4"],
|
42 |
["examples/02_cups.mp4"],
|
|
|
47 |
|
48 |
OBJ_ID = 0
|
49 |
|
50 |
+
# Initialize model on CPU - add error handling for file paths
|
51 |
sam2_checkpoint = "checkpoints/edgetam.pt"
|
52 |
model_cfg = "edgetam.yaml"
|
53 |
|
54 |
+
# Check if model files exist
|
55 |
def check_file_exists(filepath):
|
56 |
exists = os.path.exists(filepath)
|
57 |
if not exists:
|
58 |
print(f"WARNING: File not found: {filepath}")
|
59 |
return exists
|
60 |
|
61 |
+
# Verify files exist
|
62 |
model_files_exist = check_file_exists(sam2_checkpoint) and check_file_exists(model_cfg)
|
63 |
+
predictor = None
|
64 |
try:
|
65 |
+
# Load model with careful error handling
|
66 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
67 |
+
print("predictor loaded on CPU")
|
68 |
except Exception as e:
|
69 |
print(f"Error loading model: {e}")
|
70 |
import traceback
|
71 |
traceback.print_exc()
|
|
|
72 |
|
73 |
+
# Function to get video frame rate
|
74 |
def get_video_fps(video_path):
|
75 |
cap = cv2.VideoCapture(video_path)
|
76 |
if not cap.isOpened():
|
77 |
print("Error: Could not open video.")
|
78 |
+
return 30.0 # Default fallback value
|
79 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
80 |
cap.release()
|
81 |
return fps
|
82 |
|
83 |
def reset(session_state):
|
84 |
+
"""Reset all session state variables and UI elements."""
|
85 |
session_state["input_points"] = []
|
86 |
session_state["input_labels"] = []
|
87 |
if session_state["inference_state"] is not None:
|
|
|
89 |
session_state["first_frame"] = None
|
90 |
session_state["all_frames"] = None
|
91 |
session_state["inference_state"] = None
|
92 |
+
session_state["progress"] = 0
|
93 |
return (
|
94 |
None,
|
95 |
gr.update(open=True),
|
96 |
None,
|
97 |
None,
|
98 |
gr.update(value=None, visible=False),
|
99 |
+
gr.update(value=0, visible=False),
|
100 |
session_state,
|
101 |
)
|
102 |
|
103 |
def clear_points(session_state):
|
104 |
+
"""Clear tracking points while keeping the video frames."""
|
105 |
session_state["input_points"] = []
|
106 |
session_state["input_labels"] = []
|
107 |
if session_state["inference_state"] is not None and session_state["inference_state"].get("tracking_has_started", False):
|
|
|
110 |
session_state["first_frame"],
|
111 |
None,
|
112 |
gr.update(value=None, visible=False),
|
113 |
+
gr.update(value=0, visible=False),
|
114 |
session_state,
|
115 |
)
|
116 |
|
117 |
def preprocess_video_in(video_path, session_state):
|
118 |
+
"""Process input video to extract frames for tracking."""
|
119 |
+
if video_path is None or not os.path.exists(video_path):
|
120 |
return (
|
121 |
+
gr.update(open=True), # video_in_drawer
|
122 |
+
None, # points_map
|
123 |
+
None, # output_image
|
124 |
+
gr.update(value=None, visible=False), # output_video
|
125 |
+
gr.update(value=0, visible=False), # progress_bar
|
126 |
session_state,
|
127 |
)
|
128 |
|
129 |
+
# Read the first frame
|
130 |
cap = cv2.VideoCapture(video_path)
|
131 |
if not cap.isOpened():
|
132 |
+
print(f"Error: Could not open video at {video_path}.")
|
133 |
return (
|
134 |
+
gr.update(open=True), # video_in_drawer
|
135 |
+
None, # points_map
|
136 |
+
None, # output_image
|
137 |
+
gr.update(value=None, visible=False), # output_video
|
138 |
+
gr.update(value=0, visible=False), # progress_bar
|
139 |
session_state,
|
140 |
)
|
141 |
|
142 |
+
# For CPU optimization - determine video properties
|
143 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
144 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
145 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
146 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
147 |
+
|
148 |
+
print(f"Video info: {frame_width}x{frame_height}, {total_frames} frames, {fps} FPS")
|
149 |
+
|
150 |
+
# Determine if we need to resize for CPU performance
|
151 |
+
target_width = 640 # Target width for processing on CPU
|
152 |
scale_factor = 1.0
|
153 |
+
|
154 |
if frame_width > target_width:
|
155 |
scale_factor = target_width / frame_width
|
156 |
+
new_width = int(frame_width * scale_factor)
|
157 |
+
new_height = int(frame_height * scale_factor)
|
158 |
+
print(f"Resizing video for CPU processing: {frame_width}x{frame_height} -> {new_width}x{new_height}")
|
159 |
+
|
160 |
+
# Read frames - for CPU we'll be more selective about which frames to keep
|
161 |
frame_number = 0
|
162 |
first_frame = None
|
163 |
all_frames = []
|
164 |
+
|
165 |
+
# For CPU optimization, skip frames if video is too long
|
166 |
+
frame_stride = 1
|
167 |
+
if total_frames > 300: # If more than 300 frames
|
168 |
+
frame_stride = max(1, int(total_frames / 300)) # Process at most ~300 frames
|
169 |
+
print(f"Video has {total_frames} frames, using stride of {frame_stride} to reduce processing load")
|
170 |
+
|
171 |
while True:
|
172 |
ret, frame = cap.read()
|
173 |
if not ret:
|
174 |
break
|
175 |
+
|
176 |
+
if frame_number % frame_stride == 0: # Process every frame_stride frames
|
177 |
+
try:
|
178 |
+
# Resize the frame if needed
|
179 |
+
if scale_factor != 1.0:
|
180 |
+
frame = cv2.resize(
|
181 |
+
frame,
|
182 |
+
(int(frame_width * scale_factor), int(frame_height * scale_factor)),
|
183 |
+
interpolation=cv2.INTER_AREA
|
184 |
+
)
|
185 |
+
|
186 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
187 |
+
frame = np.array(frame)
|
188 |
+
|
189 |
+
# Store the first frame
|
190 |
+
if first_frame is None:
|
191 |
+
first_frame = frame
|
192 |
+
all_frames.append(frame)
|
193 |
+
except Exception as e:
|
194 |
+
print(f"Error processing frame {frame_number}: {e}")
|
195 |
+
|
196 |
frame_number += 1
|
197 |
|
198 |
cap.release()
|
199 |
+
|
200 |
+
# Ensure we have at least one frame
|
201 |
+
if first_frame is None or len(all_frames) == 0:
|
202 |
+
print("Error: No frames could be extracted from the video.")
|
203 |
+
return (
|
204 |
+
gr.update(open=True), # video_in_drawer
|
205 |
+
None, # points_map
|
206 |
+
None, # output_image
|
207 |
+
gr.update(value=None, visible=False), # output_video
|
208 |
+
gr.update(value=0, visible=False), # progress_bar
|
209 |
+
session_state,
|
210 |
+
)
|
211 |
+
|
212 |
+
print(f"Successfully extracted {len(all_frames)} frames from video")
|
213 |
+
|
214 |
session_state["first_frame"] = copy.deepcopy(first_frame)
|
215 |
session_state["all_frames"] = all_frames
|
216 |
session_state["frame_stride"] = frame_stride
|
217 |
session_state["scale_factor"] = scale_factor
|
218 |
+
session_state["original_dimensions"] = (frame_width, frame_height)
|
219 |
+
session_state["progress"] = 0
|
|
|
|
|
|
|
220 |
|
221 |
+
try:
|
222 |
+
session_state["inference_state"] = predictor.init_state(video_path=video_path)
|
223 |
+
session_state["input_points"] = []
|
224 |
+
session_state["input_labels"] = []
|
225 |
+
except Exception as e:
|
226 |
+
print(f"Error initializing inference state: {e}")
|
227 |
+
import traceback
|
228 |
+
traceback.print_exc()
|
229 |
+
session_state["inference_state"] = None
|
230 |
+
|
231 |
return [
|
232 |
+
gr.update(open=False), # video_in_drawer
|
233 |
+
first_frame, # points_map
|
234 |
+
None, # output_image
|
235 |
+
gr.update(value=None, visible=False), # output_video
|
236 |
+
gr.update(value=0, visible=False), # progress_bar
|
237 |
session_state,
|
238 |
]
|
239 |
|
240 |
+
def segment_with_points(
|
241 |
+
point_type,
|
242 |
+
session_state,
|
243 |
+
evt: gr.SelectData,
|
244 |
+
):
|
245 |
+
"""Add and process tracking points on the first frame."""
|
246 |
+
if session_state["first_frame"] is None:
|
247 |
+
print("Error: No frame available for segmentation")
|
248 |
+
return None, None, session_state
|
249 |
+
|
250 |
session_state["input_points"].append(evt.index)
|
251 |
print(f"TRACKING INPUT POINT: {session_state['input_points']}")
|
252 |
|
|
|
256 |
session_state["input_labels"].append(0)
|
257 |
print(f"TRACKING INPUT LABEL: {session_state['input_labels']}")
|
258 |
|
259 |
+
# Open the image and get its dimensions
|
260 |
first_frame = session_state["first_frame"]
|
261 |
h, w = first_frame.shape[:2]
|
262 |
transparent_background = Image.fromarray(first_frame).convert("RGBA")
|
263 |
|
264 |
+
# Define the circle radius as a fraction of the smaller dimension
|
265 |
+
fraction = 0.01 # You can adjust this value as needed
|
266 |
radius = int(fraction * min(w, h))
|
267 |
+
|
268 |
+
# Create a transparent layer to draw on
|
269 |
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
|
270 |
|
271 |
for index, track in enumerate(session_state["input_points"]):
|
272 |
+
if session_state["input_labels"][index] == 1:
|
273 |
+
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1) # Green for include
|
274 |
+
else:
|
275 |
+
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1) # Red for exclude
|
276 |
|
277 |
+
# Convert the transparent layer back to an image
|
278 |
transparent_layer = Image.fromarray(transparent_layer, "RGBA")
|
279 |
+
selected_point_map = Image.alpha_composite(
|
280 |
+
transparent_background, transparent_layer
|
281 |
+
)
|
282 |
|
283 |
+
# Let's add a positive click at (x, y) = (210, 350) to get started
|
284 |
points = np.array(session_state["input_points"], dtype=np.float32)
|
285 |
+
# for labels, `1` means positive click and `0` means negative click
|
286 |
labels = np.array(session_state["input_labels"], np.int32)
|
287 |
+
|
288 |
try:
|
289 |
+
if predictor is None:
|
290 |
+
raise ValueError("Model predictor is not initialized")
|
291 |
+
|
292 |
+
if session_state["inference_state"] is None:
|
293 |
+
raise ValueError("Inference state is not initialized")
|
294 |
+
|
295 |
+
# For CPU optimization, we'll process with smaller batch size
|
296 |
_, _, out_mask_logits = predictor.add_new_points(
|
297 |
inference_state=session_state["inference_state"],
|
298 |
frame_idx=0,
|
|
|
300 |
points=points,
|
301 |
labels=labels,
|
302 |
)
|
303 |
+
|
304 |
+
# Create the mask
|
305 |
mask_array = (out_mask_logits[0] > 0.0).cpu().numpy()
|
306 |
|
307 |
+
# Ensure the mask has the same size as the frame
|
308 |
if mask_array.shape[:2] != (h, w):
|
309 |
+
mask_array = cv2.resize(
|
310 |
+
mask_array.astype(np.uint8),
|
311 |
+
(w, h),
|
312 |
+
interpolation=cv2.INTER_NEAREST
|
313 |
+
).astype(bool)
|
314 |
|
315 |
mask_image = show_mask(mask_array)
|
316 |
+
|
317 |
+
# Make sure mask_image has the same size as the background
|
318 |
if mask_image.size != transparent_background.size:
|
319 |
mask_image = mask_image.resize(transparent_background.size, Image.NEAREST)
|
320 |
+
|
321 |
first_frame_output = Image.alpha_composite(transparent_background, mask_image)
|
322 |
except Exception as e:
|
323 |
print(f"Error in segmentation: {e}")
|
324 |
+
import traceback
|
325 |
+
traceback.print_exc()
|
326 |
+
# Return just the points as fallback
|
327 |
first_frame_output = selected_point_map
|
328 |
|
329 |
return selected_point_map, first_frame_output, session_state
|
330 |
|
331 |
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
332 |
+
"""Convert binary mask to RGBA image for visualization."""
|
333 |
if random_color:
|
334 |
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
335 |
else:
|
336 |
cmap = plt.get_cmap("tab10")
|
337 |
cmap_idx = 0 if obj_id is None else obj_id
|
338 |
color = np.array([*cmap(cmap_idx)[:3], 0.6])
|
339 |
+
|
340 |
+
# Handle different mask shapes properly
|
341 |
+
if len(mask.shape) == 2:
|
342 |
+
h, w = mask.shape
|
343 |
+
else:
|
344 |
+
h, w = mask.shape[-2:]
|
345 |
+
|
346 |
+
# Ensure correct reshaping based on mask dimensions
|
347 |
mask_reshaped = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
348 |
mask_rgba = (mask_reshaped * 255).astype(np.uint8)
|
349 |
+
|
350 |
if convert_to_image:
|
351 |
try:
|
352 |
+
# Ensure the mask has correct RGBA shape (h, w, 4)
|
353 |
if mask_rgba.shape[2] != 4:
|
354 |
+
# If not RGBA, create a proper RGBA array
|
355 |
proper_mask = np.zeros((h, w, 4), dtype=np.uint8)
|
356 |
+
# Copy available channels
|
357 |
proper_mask[:, :, :min(mask_rgba.shape[2], 4)] = mask_rgba[:, :, :min(mask_rgba.shape[2], 4)]
|
358 |
mask_rgba = proper_mask
|
359 |
+
|
360 |
+
# Create the PIL image
|
361 |
return Image.fromarray(mask_rgba, "RGBA")
|
362 |
except Exception as e:
|
363 |
print(f"Error converting mask to image: {e}")
|
364 |
+
# Fallback: create a blank transparent image of correct size
|
365 |
+
blank = np.zeros((h, w, 4), dtype=np.uint8)
|
366 |
+
return Image.fromarray(blank, "RGBA")
|
367 |
|
368 |
return mask_rgba
|
369 |
|
370 |
+
def update_progress(progress_percent, progress_bar):
|
371 |
+
"""Update progress bar during processing."""
|
372 |
+
return gr.update(value=progress_percent, visible=True)
|
373 |
+
|
374 |
+
def propagate_to_all(
|
375 |
+
video_in,
|
376 |
+
session_state,
|
377 |
+
progress=gr.Progress(),
|
378 |
+
):
|
379 |
+
"""Process video frames and generate masked video output with progress tracking."""
|
380 |
+
if (
|
381 |
+
len(session_state["input_points"]) == 0
|
382 |
+
or video_in is None
|
383 |
+
or session_state["inference_state"] is None
|
384 |
+
or predictor is None
|
385 |
+
):
|
386 |
+
print("Missing required data for tracking")
|
387 |
+
return (
|
388 |
+
gr.update(value=None, visible=False),
|
389 |
+
gr.update(value=0, visible=False),
|
390 |
+
session_state,
|
391 |
+
)
|
392 |
|
393 |
+
# For CPU optimization: process in smaller batches
|
394 |
+
chunk_size = 3 # Process 3 frames at a time to avoid memory issues on CPU
|
395 |
+
|
396 |
try:
|
397 |
+
# run propagation throughout the video and collect the results in a dict
|
398 |
+
video_segments = {} # video_segments contains the per-frame segmentation results
|
399 |
+
print("Starting propagate_in_video on CPU")
|
400 |
+
|
401 |
+
progress.tqdm.reset()
|
402 |
+
|
403 |
+
# Get the count for progress reporting
|
404 |
+
all_frames_count = 0
|
405 |
+
for _ in predictor.propagate_in_video(session_state["inference_state"], count_only=True):
|
406 |
+
all_frames_count += 1
|
407 |
+
|
408 |
+
print(f"Total frames to process: {all_frames_count}")
|
409 |
+
progress.tqdm.total = all_frames_count
|
410 |
+
|
411 |
+
# Now do the actual processing with progress updates
|
412 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
|
413 |
+
session_state["inference_state"]
|
414 |
+
):
|
415 |
try:
|
416 |
+
# Store the masks for each object ID
|
417 |
video_segments[out_frame_idx] = {
|
418 |
+
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
419 |
for i, out_obj_id in enumerate(out_obj_ids)
|
420 |
}
|
421 |
+
|
422 |
+
# Update progress
|
423 |
+
progress.tqdm.update(1)
|
424 |
+
progress_percent = min(100, int((out_frame_idx + 1) / all_frames_count * 100))
|
425 |
+
session_state["progress"] = progress_percent
|
426 |
+
|
427 |
+
if out_frame_idx % 10 == 0:
|
428 |
+
print(f"Processed frame {out_frame_idx}/{all_frames_count} ({progress_percent}%)")
|
429 |
+
|
430 |
+
# Release memory periodically
|
431 |
if out_frame_idx % chunk_size == 0:
|
432 |
+
# Explicitly clear any tensors
|
433 |
+
del out_mask_logits
|
434 |
import gc
|
435 |
gc.collect()
|
436 |
except Exception as e:
|
437 |
print(f"Error processing frame {out_frame_idx}: {e}")
|
438 |
+
import traceback
|
439 |
+
traceback.print_exc()
|
440 |
continue
|
441 |
|
442 |
+
# For CPU optimization: increase stride to reduce processing
|
443 |
+
# Create a more aggressive stride to limit to fewer frames in output
|
444 |
+
total_frames = len(video_segments)
|
445 |
+
print(f"Total frames processed: {total_frames}")
|
446 |
+
|
447 |
+
# Update progress to show rendering phase
|
448 |
+
progress.tqdm.reset()
|
449 |
+
progress.tqdm.total = 2 # Two phases: rendering and video creation
|
450 |
+
progress.tqdm.update(1)
|
451 |
+
session_state["progress"] = 50
|
452 |
+
|
453 |
+
# Limit to max 50 frames for CPU processing
|
454 |
max_output_frames = 50
|
455 |
vis_frame_stride = max(1, total_frames // max_output_frames)
|
456 |
+
print(f"Using stride of {vis_frame_stride} for output video generation")
|
457 |
+
|
458 |
+
# Get dimensions of the frames
|
459 |
+
if len(session_state["all_frames"]) == 0:
|
460 |
+
raise ValueError("No frames available in session state")
|
461 |
+
|
462 |
first_frame = session_state["all_frames"][0]
|
463 |
h, w = first_frame.shape[:2]
|
464 |
+
|
465 |
+
# Create output frames
|
466 |
output_frames = []
|
467 |
+
progress.tqdm.reset()
|
468 |
+
progress.tqdm.total = (total_frames // vis_frame_stride) + 1
|
469 |
+
|
470 |
for out_frame_idx in range(0, total_frames, vis_frame_stride):
|
471 |
if out_frame_idx not in video_segments or OBJ_ID not in video_segments[out_frame_idx]:
|
472 |
+
progress.tqdm.update(1)
|
473 |
continue
|
474 |
+
|
475 |
try:
|
476 |
+
# Get corresponding frame from all_frames
|
477 |
+
if out_frame_idx >= len(session_state["all_frames"]):
|
478 |
+
print(f"Warning: Frame index {out_frame_idx} exceeds available frames {len(session_state['all_frames'])}")
|
479 |
+
frame_idx = min(out_frame_idx, len(session_state["all_frames"])-1)
|
480 |
+
else:
|
481 |
+
frame_idx = out_frame_idx
|
482 |
+
|
483 |
+
frame = session_state["all_frames"][frame_idx]
|
484 |
transparent_background = Image.fromarray(frame).convert("RGBA")
|
485 |
+
|
486 |
+
# Get the mask and ensure it's the right size
|
487 |
out_mask = video_segments[out_frame_idx][OBJ_ID]
|
488 |
+
|
489 |
+
# Ensure the mask is not empty and has the right dimensions
|
490 |
+
if out_mask.size == 0:
|
491 |
+
print(f"Warning: Empty mask for frame {out_frame_idx}")
|
492 |
+
# Create an empty mask of the right size
|
493 |
+
out_mask = np.zeros((h, w), dtype=bool)
|
494 |
+
|
495 |
+
# Resize mask if dimensions don't match
|
496 |
+
mask_h, mask_w = out_mask.shape[:2]
|
497 |
+
if mask_h != h or mask_w != w:
|
498 |
+
print(f"Resizing mask from {mask_h}x{mask_w} to {h}x{w}")
|
499 |
+
out_mask = cv2.resize(
|
500 |
+
out_mask.astype(np.uint8),
|
501 |
+
(w, h),
|
502 |
+
interpolation=cv2.INTER_NEAREST
|
503 |
+
).astype(bool)
|
504 |
+
|
505 |
mask_image = show_mask(out_mask)
|
506 |
+
|
507 |
+
# Make sure mask has same dimensions as background
|
508 |
if mask_image.size != transparent_background.size:
|
509 |
mask_image = mask_image.resize(transparent_background.size, Image.NEAREST)
|
510 |
+
|
511 |
output_frame = Image.alpha_composite(transparent_background, mask_image)
|
512 |
+
output_frame = np.array(output_frame)
|
513 |
+
output_frames.append(output_frame)
|
514 |
+
|
515 |
+
# Update progress
|
516 |
+
progress.tqdm.update(1)
|
517 |
+
progress_percent = 50 + min(50, int((len(output_frames) / (total_frames // vis_frame_stride)) * 50))
|
518 |
+
session_state["progress"] = progress_percent
|
519 |
+
|
520 |
+
# Clear memory periodically
|
521 |
if len(output_frames) % 10 == 0:
|
522 |
import gc
|
523 |
gc.collect()
|
524 |
+
|
525 |
except Exception as e:
|
526 |
+
print(f"Error creating output frame {out_frame_idx}: {e}")
|
527 |
+
import traceback
|
528 |
traceback.print_exc()
|
529 |
+
progress.tqdm.update(1)
|
530 |
continue
|
531 |
|
532 |
+
# Create a video clip from the image sequence
|
533 |
original_fps = get_video_fps(video_in)
|
534 |
+
fps = original_fps
|
535 |
+
|
536 |
+
# For CPU optimization - lower FPS if original is high
|
537 |
+
if fps > 15:
|
538 |
+
fps = 15 # Lower fps for CPU processing
|
539 |
+
|
540 |
+
print(f"Creating video with {len(output_frames)} frames at {fps} FPS")
|
541 |
+
|
542 |
+
# Update progress to show video creation phase
|
543 |
+
session_state["progress"] = 90
|
544 |
+
|
545 |
+
# Check if we have any frames to work with
|
546 |
+
if len(output_frames) == 0:
|
547 |
+
raise ValueError("No output frames were generated")
|
548 |
+
|
549 |
+
# Ensure all frames have the same shape
|
550 |
+
first_shape = output_frames[0].shape
|
551 |
+
valid_frames = []
|
552 |
+
for i, frame in enumerate(output_frames):
|
553 |
+
if frame.shape == first_shape:
|
554 |
+
valid_frames.append(frame)
|
555 |
+
else:
|
556 |
+
print(f"Skipping frame {i} with inconsistent shape: {frame.shape} vs {first_shape}")
|
557 |
+
|
558 |
+
if len(valid_frames) == 0:
|
559 |
+
raise ValueError("No valid frames with consistent shape")
|
560 |
+
|
561 |
+
clip = ImageSequenceClip(valid_frames, fps=fps)
|
562 |
+
|
563 |
+
# Write the result to a file - use lower quality for CPU
|
564 |
unique_id = datetime.now().strftime("%Y%m%d%H%M%S")
|
565 |
+
final_vid_output_path = f"output_video_{unique_id}.mp4"
|
566 |
+
final_vid_output_path = os.path.join(tempfile.gettempdir(), final_vid_output_path)
|
567 |
|
568 |
+
# Lower bitrate for CPU processing
|
569 |
clip.write_videofile(
|
570 |
+
final_vid_output_path,
|
571 |
+
codec="libx264",
|
572 |
bitrate="800k",
|
573 |
+
threads=2, # Use fewer threads for CPU
|
574 |
+
logger=None # Disable logger to reduce console output
|
575 |
)
|
576 |
+
|
577 |
+
# Complete progress
|
578 |
+
session_state["progress"] = 100
|
579 |
+
|
580 |
+
# Free memory
|
581 |
+
del video_segments
|
582 |
+
del output_frames
|
583 |
import gc
|
584 |
gc.collect()
|
585 |
|
586 |
+
return (
|
587 |
+
gr.update(value=final_vid_output_path, visible=True),
|
588 |
+
gr.update(value=100, visible=False),
|
589 |
+
session_state,
|
590 |
+
)
|
591 |
+
|
592 |
except Exception as e:
|
593 |
print(f"Error in propagate_to_all: {e}")
|
594 |
+
import traceback
|
595 |
+
traceback.print_exc()
|
596 |
+
return (
|
597 |
+
gr.update(value=None, visible=False),
|
598 |
+
gr.update(value=0, visible=False),
|
599 |
+
session_state,
|
600 |
+
)
|
601 |
|
602 |
def update_ui():
|
603 |
+
"""Show progress bar when starting processing."""
|
604 |
+
return gr.update(visible=True), gr.update(visible=True, value=0)
|
605 |
+
|
606 |
|
607 |
+
# Main Gradio UI setup
|
608 |
with gr.Blocks() as demo:
|
609 |
+
session_state = gr.State(
|
610 |
+
{
|
611 |
+
"first_frame": None,
|
612 |
+
"all_frames": None,
|
613 |
+
"input_points": [],
|
614 |
+
"input_labels": [],
|
615 |
+
"inference_state": None,
|
616 |
+
"frame_stride": 1,
|
617 |
+
"scale_factor": 1.0,
|
618 |
+
"original_dimensions": None,
|
619 |
+
"progress": 0,
|
620 |
+
}
|
621 |
+
)
|
622 |
|
623 |
with gr.Column():
|
624 |
+
# Title
|
625 |
gr.Markdown(title)
|
626 |
with gr.Row():
|
627 |
+
|
628 |
with gr.Column():
|
629 |
+
# Instructions
|
630 |
gr.Markdown(description_p)
|
631 |
+
|
632 |
with gr.Accordion("Input Video", open=True) as video_in_drawer:
|
633 |
video_in = gr.Video(label="Input Video", format="mp4")
|
634 |
+
|
635 |
with gr.Row():
|
636 |
+
point_type = gr.Radio(
|
637 |
+
label="point type",
|
638 |
+
choices=["include", "exclude"],
|
639 |
+
value="include",
|
640 |
+
scale=2,
|
641 |
+
)
|
642 |
propagate_btn = gr.Button("Track", scale=1, variant="primary")
|
643 |
clear_points_btn = gr.Button("Clear Points", scale=1)
|
644 |
reset_btn = gr.Button("Reset", scale=1)
|
645 |
+
|
646 |
+
points_map = gr.Image(
|
647 |
+
label="Frame with Point Prompt", type="numpy", interactive=False
|
648 |
+
)
|
649 |
+
|
650 |
+
# Add progress bar
|
651 |
+
progress_bar = gr.Slider(
|
652 |
+
minimum=0,
|
653 |
+
maximum=100,
|
654 |
+
value=0,
|
655 |
+
step=1,
|
656 |
+
label="Processing Progress",
|
657 |
+
visible=False,
|
658 |
+
interactive=False
|
659 |
+
)
|
660 |
+
|
661 |
with gr.Column():
|
662 |
gr.Markdown("# Try some of the examples below ⬇️")
|
663 |
+
gr.Examples(
|
664 |
+
examples=examples,
|
665 |
+
inputs=[
|
666 |
+
video_in,
|
667 |
+
],
|
668 |
+
examples_per_page=5,
|
669 |
+
)
|
670 |
+
|
671 |
output_image = gr.Image(label="Reference Mask")
|
672 |
output_video = gr.Video(visible=False)
|
673 |
|
674 |
+
# When new video is uploaded
|
675 |
video_in.upload(
|
676 |
fn=preprocess_video_in,
|
677 |
+
inputs=[
|
678 |
+
video_in,
|
679 |
+
session_state,
|
680 |
+
],
|
681 |
+
outputs=[
|
682 |
+
video_in_drawer, # Accordion to hide uploaded video player
|
683 |
+
points_map, # Image component where we add new tracking points
|
684 |
+
output_image,
|
685 |
+
output_video,
|
686 |
+
progress_bar,
|
687 |
+
session_state,
|
688 |
+
],
|
689 |
queue=False,
|
690 |
)
|
691 |
|
692 |
video_in.change(
|
693 |
fn=preprocess_video_in,
|
694 |
+
inputs=[
|
695 |
+
video_in,
|
696 |
+
session_state,
|
697 |
+
],
|
698 |
+
outputs=[
|
699 |
+
video_in_drawer, # Accordion to hide uploaded video player
|
700 |
+
points_map, # Image component where we add new tracking points
|
701 |
+
output_image,
|
702 |
+
output_video,
|
703 |
+
progress_bar,
|
704 |
+
session_state,
|
705 |
+
],
|
706 |
queue=False,
|
707 |
)
|
708 |
|
709 |
+
# triggered when we click on image to add new points
|
710 |
points_map.select(
|
711 |
fn=segment_with_points,
|
712 |
+
inputs=[
|
713 |
+
point_type, # "include" or "exclude"
|
714 |
+
session_state,
|
715 |
+
],
|
716 |
+
outputs=[
|
717 |
+
points_map, # updated image with points
|
718 |
+
output_image,
|
719 |
+
session_state,
|
720 |
+
],
|
721 |
queue=False,
|
722 |
)
|
723 |
|
724 |
+
# Clear every points clicked and added to the map
|
725 |
clear_points_btn.click(
|
726 |
fn=clear_points,
|
727 |
inputs=session_state,
|
728 |
+
outputs=[
|
729 |
+
points_map,
|
730 |
+
output_image,
|
731 |
+
output_video,
|
732 |
+
progress_bar,
|
733 |
+
session_state,
|
734 |
+
],
|
735 |
queue=False,
|
736 |
)
|
737 |
|
738 |
reset_btn.click(
|
739 |
fn=reset,
|
740 |
inputs=session_state,
|
741 |
+
outputs=[
|
742 |
+
video_in,
|
743 |
+
video_in_drawer,
|
744 |
+
points_map,
|
745 |
+
output_image,
|
746 |
+
output_video,
|
747 |
+
progress_bar,
|
748 |
+
session_state,
|
749 |
+
],
|
750 |
queue=False,
|
751 |
)
|
752 |
|
753 |
propagate_btn.click(
|
754 |
fn=update_ui,
|
755 |
inputs=[],
|
756 |
+
outputs=[output_video, progress_bar],
|
757 |
queue=False,
|
758 |
).then(
|
759 |
fn=propagate_to_all,
|
760 |
+
inputs=[
|
761 |
+
video_in,
|
762 |
+
session_state,
|
763 |
+
],
|
764 |
+
outputs=[
|
765 |
+
output_video,
|
766 |
+
progress_bar,
|
767 |
+
session_state,
|
768 |
+
],
|
769 |
+
queue=True, # Use queue for CPU processing
|
770 |
)
|
771 |
|
772 |
+
|
773 |
demo.queue()
|
774 |
demo.launch()
|