import gradio as gr import subprocess import tempfile import os import shutil from logging_config import logger from transcription_tool import TranscriptTool # Assuming TranscriptionTool is in `transcription_tool.py` # smolagent transcription tool transcript_tool = TranscriptTool() def transcribe_url(url): """ Transcribes audio or video from a given URL. Downloads the media from the URL, converts it to WAV format, and then uses the TranscriptTool to perform the transcription in English Args: url (str): The URL of the audio or video file. Returns: str: The transcription of the audio/video in english, or an error message if download or transcription fails. """ local_file_path = None try: if not url: return "Error: Please provide a URL." # Removed the second empty string as the function only returns one value logger.info(f"Attempting to download audio from URL: {url}") temp_download_dir = "./temp_downloads" os.makedirs(temp_download_dir, exist_ok=True) # Use yt-dlp to download the best audio format and convert to wav # -f bestaudio: selects the best audio format # -x: extracts audio # --audio-format wav: converts to wav format # -o: specifies output template output_template = os.path.join(temp_download_dir, "downloaded_audio.%(ext)s") # --- Start Added Code --- # Ensure any previous download is removed before starting a new one logger.info(f"Checking for existing files matching 'downloaded_audio.*' in {temp_download_dir}") for filename in os.listdir(temp_download_dir): if filename.startswith("downloaded_audio."): file_to_delete = os.path.join(temp_download_dir, filename) try: os.remove(file_to_delete) logger.info(f"Removed existing file: {file_to_delete}") except OSError as e: logger.error(f"Error removing file {file_to_delete}: {e.strerror}") # --- End Added Code --- cmd = ["yt-dlp", "-f", "bestaudio", "-x", "--audio-format", "wav", "-o", output_template, url] process = subprocess.run(cmd, check=True, capture_output=True, text=True) logger.info("yt-dlp stdout:\n" + process.stdout) logger.info("yt-dlp stderr:\n" + process.stderr) # Find the downloaded file (yt-dlp might add .wav extension) downloaded_files = [f for f in os.listdir(temp_download_dir) if f.startswith("downloaded_audio.")] if not downloaded_files: raise RuntimeError("yt-dlp failed to download or convert audio.") local_file_path = os.path.join(temp_download_dir, downloaded_files[0]) logger.info(f"Downloaded audio to temporary file: {local_file_path}") print(f"Downloaded audio to temporary file: {local_file_path}") # Perform transcription transcription_result = transcript_tool.forward(local_file_path) return transcription_result except subprocess.CalledProcessError as e: error_message = f"yt-dlp error: {e.stderr}" logger.error(error_message) return f"An error occurred during download: {error_message}" except Exception as e: error_message = f"An unexpected error occurred: {str(e)}" logger.error(error_message) return error_message with gr.Blocks() as app: gr.Markdown("#
gradio-transcript-mcp: Transcribe Audio/Video from URL
") gr.Markdown( """ This application functions as an MCP server that transcribes audio or video from a URL using OpenAI's Whisper model. It downloads the media, converts it to WAV, and performs the transcription. ### Connecting to the Hosted Server To connect your MCP client that supports SSE to this hosted server, add a configuration entry similar to this: ```json { "mcpServers": { "gradio-transcript": { "url": "https://bismay-gradio-transcript-mcp.hf.space/gradio_api/mcp/sse" } } } ``` For more details on setup and MCP usage, see the [README.md](README.md). """ ) url_input = gr.Textbox(label="Enter Audio/Video URL", placeholder="e.g., https://www.youtube.com/watch?v=dQw4w9WgXcQ") transcribe_button = gr.Button("Transcribe") gr.Markdown("Provide a URL to transcribe audio or YT video.") transcription_output = gr.Textbox(label="Transcription", lines=10) transcribe_button.click( fn=transcribe_url, inputs=[url_input], outputs=[transcription_output] ) if __name__ == "__main__": app.launch(mcp_server=True)